177 lines
6.6 KiB
Python
177 lines
6.6 KiB
Python
|
import torch
|
||
|
from torch import nn
|
||
|
import numpy as np
|
||
|
import tqdm
|
||
|
from torch.utils.data import Dataset, DataLoader
|
||
|
from labirinth_ai.Models.BaseModel import device
|
||
|
|
||
|
|
||
|
class NodeGene:
|
||
|
valid_types = ['sensor', 'hidden', 'output']
|
||
|
|
||
|
def __init__(self, node_id, node_type, bias=None):
|
||
|
assert node_type in self.valid_types, 'Unknown node type!'
|
||
|
self.node_id = node_id
|
||
|
self.node_type = node_type
|
||
|
if node_type == 'hidden':
|
||
|
assert bias is not None, 'Expected a bias for hidden node types!'
|
||
|
self.bias = bias
|
||
|
else:
|
||
|
self.bias = None
|
||
|
|
||
|
|
||
|
class ConnectionGene:
|
||
|
def __init__(self, start, end, enabled, innovation_num, weight=None, recurrent=False):
|
||
|
self.start = start
|
||
|
self.end = end
|
||
|
self.enabled = enabled
|
||
|
self.innvovation_num = innovation_num
|
||
|
self.recurrent = recurrent
|
||
|
if weight is None:
|
||
|
self.weight = np.random.random(1)[0] * 2 - 1.0
|
||
|
else:
|
||
|
self.weight = weight
|
||
|
|
||
|
|
||
|
class EvolutionModel(nn.Module):
|
||
|
evolutionary = True
|
||
|
|
||
|
def __init__(self, view_dimension, action_num, channels, genes=None):
|
||
|
super(EvolutionModel, self).__init__()
|
||
|
self.flatten = nn.Flatten()
|
||
|
|
||
|
self.action_num = action_num
|
||
|
self.viewD = view_dimension
|
||
|
self.channels = channels
|
||
|
|
||
|
if genes is None:
|
||
|
self.num_input_nodes = channels * (2 * self.viewD + 1) * (2 * self.viewD + 1) + 2
|
||
|
|
||
|
self.genes = {'nodes': {}, 'connections': []}
|
||
|
node_id = 0
|
||
|
for _ in range(self.num_input_nodes):
|
||
|
self.genes['nodes'][node_id] = NodeGene(node_id, 'sensor')
|
||
|
node_id += 1
|
||
|
first_action = node_id
|
||
|
for _ in range(action_num * 2):
|
||
|
self.genes['nodes'][node_id] = NodeGene(node_id, 'output')
|
||
|
node_id += 1
|
||
|
|
||
|
for index in range(self.num_input_nodes):
|
||
|
for action in range(action_num * 2):
|
||
|
self.genes['connections'].append(
|
||
|
ConnectionGene(index, first_action + action, True, index*(action_num * 2) + action)
|
||
|
)
|
||
|
|
||
|
self.incoming_connections = {}
|
||
|
for connection in self.genes['connections']:
|
||
|
if connection.end not in self.incoming_connections.keys():
|
||
|
self.incoming_connections[connection.end] = []
|
||
|
self.incoming_connections[connection.end].append(connection)
|
||
|
|
||
|
self.layers = {}
|
||
|
self.indices = {}
|
||
|
|
||
|
self.has_recurrent = False
|
||
|
non_recurrent_indices = {}
|
||
|
with torch.no_grad():
|
||
|
for key, value in self.incoming_connections.items():
|
||
|
value.sort(key=lambda element: element.start)
|
||
|
|
||
|
lin = nn.Linear(len(value), 1, bias=self.genes['nodes'][key].bias is not None)
|
||
|
for index, connection in enumerate(value):
|
||
|
lin.weight[0, index] = value[index].weight
|
||
|
if self.genes['nodes'][key].bias is not None:
|
||
|
lin.bias[0] = self.genes['nodes'][key].bias
|
||
|
|
||
|
non_lin = nn.ELU()
|
||
|
sequence = nn.Sequential(
|
||
|
lin,
|
||
|
non_lin
|
||
|
)
|
||
|
self.add_module('layer_' + str(key), sequence)
|
||
|
self.layers[key] = sequence
|
||
|
self.indices[key] = list(map(lambda element: element.start, value))
|
||
|
|
||
|
non_recurrent_indices[key] = list(filter(lambda element: not element.recurrent, value))
|
||
|
if not self.has_recurrent and len(non_recurrent_indices[key]) != len(self.indices[key]):
|
||
|
self.has_recurrent = True
|
||
|
non_recurrent_indices[key] = list(map(lambda element: element.start, non_recurrent_indices[key]))
|
||
|
rank_of_node = {}
|
||
|
for i in range(self.num_input_nodes):
|
||
|
rank_of_node[i] = 0
|
||
|
|
||
|
layers_to_add = list(non_recurrent_indices.items())
|
||
|
while len(layers_to_add) > 0:
|
||
|
for index, (key, incoming_nodes) in enumerate(list(layers_to_add)):
|
||
|
max_rank = -1
|
||
|
all_ranks_found = True
|
||
|
|
||
|
for incoming_node in incoming_nodes:
|
||
|
if incoming_node in rank_of_node.keys():
|
||
|
max_rank = max(max_rank, rank_of_node[incoming_node])
|
||
|
else:
|
||
|
all_ranks_found = False
|
||
|
|
||
|
if all_ranks_found:
|
||
|
rank_of_node[key] = max_rank + 1
|
||
|
|
||
|
layers_to_add = list(filter(lambda element: element[0] not in rank_of_node.keys(), layers_to_add))
|
||
|
ranked_layers = list(rank_of_node.items())
|
||
|
ranked_layers.sort(key=lambda element: element[1])
|
||
|
ranked_layers = list(filter(lambda element: element[1] > 0, ranked_layers))
|
||
|
self.layer_order = list(map(lambda element: element[0], ranked_layers))
|
||
|
self.memory = torch.Tensor((max(map(lambda element: element[1].node_id, self.genes['nodes'].items())) + 1))
|
||
|
|
||
|
def forward(self, x, memory=None):
|
||
|
x_flat = self.flatten(x)
|
||
|
if memory is None:
|
||
|
memory = torch.Tensor(self.memory)
|
||
|
outs = []
|
||
|
for batch_element in x_flat:
|
||
|
memory[0:self.num_input_nodes] = batch_element
|
||
|
for layer_index in self.layer_order:
|
||
|
memory[layer_index] = self.layers[layer_index](memory[self.indices[layer_index]])
|
||
|
outs.append(memory[self.num_input_nodes: self.num_input_nodes + self.action_num * 2])
|
||
|
outs = torch.stack(outs)
|
||
|
self.memory = torch.Tensor(memory)
|
||
|
return torch.reshape(outs, (x.shape[0], 4, 2))
|
||
|
else:
|
||
|
memory[:, 0:self.num_input_nodes] = x
|
||
|
for layer_index in self.layer_order:
|
||
|
memory[:, layer_index] = self.layers[layer_index](memory[:, self.indices[layer_index]])
|
||
|
return torch.reshape(
|
||
|
memory[:, self.num_input_nodes: self.num_input_nodes + self.action_num * 2],
|
||
|
(x.shape[0], 4, 2))
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
sample = np.random.random((1, 486))
|
||
|
|
||
|
model = EvolutionModel(5, 4, 4).to(device)
|
||
|
print(model)
|
||
|
print(model.has_recurrent)
|
||
|
|
||
|
test = model(torch.tensor(sample, dtype=torch.float32))
|
||
|
# test = test.cpu().detach().numpy()
|
||
|
print(test)
|
||
|
|
||
|
state = np.random.random((1, 486))
|
||
|
target = np.random.random((4, 2))
|
||
|
states = [
|
||
|
[state],
|
||
|
[state],
|
||
|
[state],
|
||
|
[state],
|
||
|
]
|
||
|
targets = [
|
||
|
[target],
|
||
|
[target],
|
||
|
[target],
|
||
|
[target],
|
||
|
]
|
||
|
|
||
|
optimizer = torch.optim.RMSprop(model.parameters(), lr=1e-3)
|
||
|
from labirinth_ai.Models.BaseModel import train
|
||
|
train(states, targets, model, optimizer)
|