Compare commits
1 commit
Author | SHA1 | Date | |
---|---|---|---|
|
9cda739698 |
23 changed files with 401 additions and 3383 deletions
301
Client/Client.py
301
Client/Client.py
|
@ -41,31 +41,10 @@ def value_to_color(v, min_value, max_value):
|
|||
|
||||
|
||||
class Client:
|
||||
def __init__(self, test=False, pos=[0, 0, 0], world_class=WorldProvider):
|
||||
def __init__(self, test=False, pos=[0, 0, 0]):
|
||||
self.state = 0
|
||||
with open('./config.json', 'r') as f:
|
||||
self.config = json.load(f)
|
||||
self.init_shaders()
|
||||
|
||||
self.world_provider = world_class(self.normal_program)
|
||||
self.draw_world()
|
||||
|
||||
self.pos = pos
|
||||
self.time = time.time()
|
||||
self.projMatrix = perspectiveMatrix(45.0, 400 / 400, 0.01, MAX_DISTANCE)
|
||||
|
||||
glutReshapeFunc(self.resize)
|
||||
glutDisplayFunc(self.display)
|
||||
glutKeyboardFunc(self.keyboardHandler)
|
||||
glutSpecialFunc(self.funcKeydHandler)
|
||||
|
||||
if not test:
|
||||
glutMainLoop()
|
||||
else:
|
||||
self.display()
|
||||
self.resize(100, 100)
|
||||
|
||||
def init_shaders(self):
|
||||
glutInit(sys.argv)
|
||||
self.width = 1920
|
||||
self.height = 1080
|
||||
|
@ -117,33 +96,80 @@ class Client:
|
|||
self.depth_program[self.normal_program[key]] = Spotlight.getDepthProgram(self.vertex_shader_id,
|
||||
key.GeometryShaderId)
|
||||
|
||||
def draw_world(self):
|
||||
self.world_provider = WorldProvider(self.normal_program)
|
||||
for x_pos in range(0, 100):
|
||||
for y_pos in range(0, 100):
|
||||
for z_pos in range(0, 1):
|
||||
self.world_provider.world.put_object(x_pos, y_pos, z_pos, Cuboid().setColor(
|
||||
random.randint(0, 100) / 100.0, random.randint(0, 100) / 100.0, random.randint(0, 100) / 100.0))
|
||||
|
||||
colors = {}
|
||||
for plate in range(int(np.max(self.world_provider.world.plates))):
|
||||
colors[plate + 1] = (random.randint(0, 100) / 100.0,
|
||||
random.randint(0, 100) / 100.0,
|
||||
random.randint(0, 100) / 100.0)
|
||||
|
||||
for x_pos in range(0, 100):
|
||||
for y_pos in range(0, 100):
|
||||
for z_pos in range(0, 1):
|
||||
if self.world_provider.world.plates[x_pos, y_pos] == -1:
|
||||
r, g, b, = 0, 0, 1 #0.5, 0.5, 0.5
|
||||
else:
|
||||
r, g, b = colors[int(self.world_provider.world.plates[x_pos, y_pos])]
|
||||
self.world_provider.world.set_color(x_pos, y_pos, z_pos, r, g, b)
|
||||
|
||||
self.projMatrix = perspectiveMatrix(45.0, 400 / 400, 0.01, MAX_DISTANCE)
|
||||
|
||||
self.rx = self.cx = self.cy = 0
|
||||
self.opening = 45
|
||||
|
||||
glutReshapeFunc(self.resize)
|
||||
glutDisplayFunc(self.display)
|
||||
glutKeyboardFunc(self.keyboardHandler)
|
||||
glutSpecialFunc(self.funcKeydHandler)
|
||||
|
||||
self.pos = pos
|
||||
|
||||
self.time = time.time()
|
||||
|
||||
self.field = (100, 100, 1)
|
||||
self.e_a = np.array([
|
||||
# [0, 0, 0],
|
||||
[1, 0, 0],
|
||||
[1, 1, 0],
|
||||
[0, 1, 0],
|
||||
[-1, 1, 0],
|
||||
[-1, 0, 0],
|
||||
[-1, -1, 0],
|
||||
[0, -1, 0],
|
||||
[1, -1, 0],
|
||||
])
|
||||
|
||||
self.relaxation_time = 0.55 # 0.55
|
||||
self.w_a = [
|
||||
4.0 / 9.0,
|
||||
1.0 / 9.0,
|
||||
1.0 / 36.0,
|
||||
1.0 / 9.0,
|
||||
1.0 / 36.0,
|
||||
1.0 / 9.0,
|
||||
1.0 / 36.0,
|
||||
1.0 / 9.0,
|
||||
1.0 / 36.0
|
||||
]
|
||||
|
||||
self.n_a = np.zeros((len(self.e_a),) + self.field)
|
||||
self.n_a_eq = np.zeros(self.n_a.shape)
|
||||
self.n = np.zeros(self.field, np.int)
|
||||
self.n[:, 50:, :] += 1
|
||||
self.viscosity = np.reshape(self.n * 0.01, self.field + (1,))
|
||||
self.gravity_applies = np.zeros(self.field)
|
||||
# self.n /= np.sum(self.n)
|
||||
self.n_a[0] = np.array(self.n)
|
||||
self.u = np.zeros(self.field + (self.e_a.shape[1],))
|
||||
self.f = np.zeros(self.field + (self.e_a.shape[1],))
|
||||
self.true_pos = np.zeros(self.field + (self.e_a.shape[1],))
|
||||
self.pos_indices = np.zeros(self.field + (self.e_a.shape[1],), dtype=np.int)
|
||||
for x in range(self.field[0]):
|
||||
for y in range(self.field[1]):
|
||||
for z in range(self.field[2]):
|
||||
self.pos_indices[x, y, z, :] = [x, y, z]
|
||||
|
||||
self.compressible = True
|
||||
self.max_n = self.w_a[0]
|
||||
|
||||
self.test_pixel = [40, 50, 0]
|
||||
|
||||
if not test:
|
||||
glutMainLoop()
|
||||
else:
|
||||
self.display()
|
||||
self.resize(100, 100)
|
||||
|
||||
def display(self):
|
||||
glClearColor(0, 0, 0, 0)
|
||||
|
@ -196,7 +222,202 @@ class Client:
|
|||
|
||||
glutSwapBuffers()
|
||||
|
||||
# print('fps', 1.0 / (time.time() - self.time))
|
||||
min_value = 0
|
||||
max_value_n = np.max(self.n)
|
||||
# max_value_n = 1.0
|
||||
|
||||
vel = np.sqrt(np.sum(np.square(self.u), axis=3)) * self.n
|
||||
max_value_vel = np.max(vel)
|
||||
# max_value_vel = np.sqrt(3)
|
||||
|
||||
print('round')
|
||||
print('sum n: %f' % np.sum(self.n))
|
||||
print('max n: %f' % np.max(self.n))
|
||||
print('min n: %f' % np.min(self.n))
|
||||
print('sum vel: %f' % np.sum(vel))
|
||||
print('max vel: %f' % np.max(vel))
|
||||
print('min vel: %f' % np.min(vel))
|
||||
|
||||
for x_pos in range(0, 100):
|
||||
for y_pos in range(0, 100):
|
||||
for z_pos in range(0, 1):
|
||||
if self.state == 2:
|
||||
r, g, b = value_to_color(int(self.gravity_applies[x_pos, y_pos, z_pos]), 0, 1)
|
||||
if self.state == 1:
|
||||
r, g, b = value_to_color(vel[x_pos, y_pos, z_pos], min_value, max_value_vel)
|
||||
if self.state == 0:
|
||||
r, g, b = value_to_color(self.n[x_pos, y_pos, z_pos], min_value, max_value_n)
|
||||
|
||||
self.world_provider.world.set_color(x_pos, y_pos, z_pos, r, g, b)
|
||||
self.world_provider.world.set_color(int(round(self.test_pixel[0])),
|
||||
int(round(self.test_pixel[1])),
|
||||
int(round(self.test_pixel[2])), 1.0, 1.0, 1.0)
|
||||
|
||||
new_f = np.zeros(self.f.shape)
|
||||
# viscosity
|
||||
neighbours_filter = np.zeros((3, 3, 3), np.int) + 1
|
||||
neighbours = convolve(np.pad(self.n, 1, constant_values=0), neighbours_filter, mode='valid') * self.n
|
||||
neighbours = np.reshape(neighbours, self.field + (1,))
|
||||
forces_to_share_per_neighbor = self.f * self.viscosity
|
||||
length = np.sqrt(np.sum(np.square(forces_to_share_per_neighbor), axis=3, keepdims=True))
|
||||
direction = forces_to_share_per_neighbor / length
|
||||
direction[(length == 0)[:, :, :, 0]] = 0
|
||||
############################## experimental
|
||||
for a in range(len(self.e_a)):
|
||||
unit = self.e_a[a] / np.sqrt(np.sum(np.square(self.e_a[a])))
|
||||
scalar = np.sum(direction * unit, axis=3, keepdims=True)
|
||||
altered_direction = direction + scalar * unit
|
||||
altered_length = np.sqrt(np.sum(np.square(altered_direction), axis=3, keepdims=True))
|
||||
altered_direction = altered_direction / altered_length
|
||||
altered_direction[(altered_length == 0)[:, :, :, 0]] = 0
|
||||
|
||||
f_2_add = length * altered_direction
|
||||
|
||||
new_f[max(0, self.e_a[a][0]):min(new_f.shape[0], new_f.shape[0] + self.e_a[a][0]),
|
||||
max(0, self.e_a[a][1]):min(new_f.shape[1], new_f.shape[1] + self.e_a[a][1]),
|
||||
max(0, self.e_a[a][2]):min(new_f.shape[2], new_f.shape[2] + self.e_a[a][2])] += f_2_add[
|
||||
max(0, -self.e_a[a][0]):min(
|
||||
new_f.shape[0],
|
||||
new_f.shape[0] -
|
||||
self.e_a[a][0]),
|
||||
max(0, -self.e_a[a][1]):min(
|
||||
new_f.shape[1],
|
||||
new_f.shape[1] -
|
||||
self.e_a[a][1]),
|
||||
max(0, -self.e_a[a][2]):min(
|
||||
new_f.shape[2],
|
||||
new_f.shape[2] -
|
||||
self.e_a[a][2])]
|
||||
|
||||
new_f += self.f - forces_to_share_per_neighbor * neighbours
|
||||
#########################################
|
||||
new_f += self.f
|
||||
# TODO movement generating things
|
||||
# gravity
|
||||
new_f[:, :, :, 1] -= 1.0 * self.n
|
||||
# clean up
|
||||
new_f[self.n == 0] = 0
|
||||
|
||||
self.f = new_f
|
||||
# collision and movement
|
||||
collision = True
|
||||
iterations = 0
|
||||
while collision:
|
||||
f_length = np.sqrt(np.sum(np.square(self.f), axis=3, keepdims=True))
|
||||
f_direction = self.f / f_length
|
||||
f_direction[f_length[:, :, :, 0] == 0] = 0
|
||||
velocity = f_direction * np.sqrt(f_length) / np.reshape(self.n, self.field + (1,)) # TODO replace self.n by mass
|
||||
velocity[self.n == 0] = 0
|
||||
timestep = min(1, 0.5 / np.max(np.sqrt(np.sum(np.square(velocity), axis=3))))
|
||||
if iterations > 20:
|
||||
print('Takes too long!')
|
||||
timestep /= 10
|
||||
new_pos = self.true_pos + velocity * timestep
|
||||
new_pos_round = np.round(new_pos)
|
||||
moved = np.logical_or.reduce(new_pos_round != [0, 0, 0], axis=3)
|
||||
pos_change_targets = new_pos_round[moved] + self.pos_indices[moved]
|
||||
|
||||
# handle bordercases
|
||||
bordercase = np.array(moved)
|
||||
bordercase[moved] = np.logical_or(
|
||||
np.logical_or(np.logical_or(0 > pos_change_targets[:, 0], pos_change_targets[:, 0] >= self.field[0]),
|
||||
np.logical_or(0 > pos_change_targets[:, 1], pos_change_targets[:, 1] >= self.field[1])),
|
||||
np.logical_or(0 > pos_change_targets[:, 2], pos_change_targets[:, 2] >= self.field[2]))
|
||||
self.f[bordercase] *= -1
|
||||
velocity[bordercase] *= -1
|
||||
|
||||
# recalculate targets
|
||||
new_pos = self.true_pos + velocity * timestep
|
||||
new_pos_round = np.round(new_pos)
|
||||
new_pos_target = new_pos_round + self.pos_indices
|
||||
|
||||
contenders = np.zeros(self.field)
|
||||
starts = self.pos_indices[self.n != 0]
|
||||
targets = new_pos_target[self.n != 0].astype(np.int)
|
||||
speeds = velocity[self.n != 0]
|
||||
forces = new_f[self.n != 0]
|
||||
max_speeds = np.zeros(self.field)
|
||||
fast_pos = {}
|
||||
is_stayer = []
|
||||
for index in range(len(targets)):
|
||||
target = targets[index]
|
||||
speed = np.sqrt(np.sum(np.square(speeds[index])))
|
||||
contenders[target[0], target[1], target[2]] += 1
|
||||
|
||||
# new max speed and we do not update stayers
|
||||
if speed > max_speeds[target[0], target[1], target[2]] and tuple(target) not in is_stayer:
|
||||
max_speeds[target[0], target[1], target[2]] = speed
|
||||
fast_pos[tuple(target)] = index
|
||||
|
||||
# atoms that are already there are there (and stay there) are the fastest
|
||||
start = starts[index]
|
||||
if np.all(start == target):
|
||||
fast_pos[tuple(target)] = index
|
||||
is_stayer.append(tuple(target))
|
||||
|
||||
collision = np.max(contenders) > 1
|
||||
|
||||
# we only need collision if there is one
|
||||
if collision:
|
||||
# go through the movers again
|
||||
for index in range(len(targets)):
|
||||
target = targets[index]
|
||||
# collision here?
|
||||
if contenders[target[0], target[1], target[2]] > 1:
|
||||
# the fastest one does not need to do anything
|
||||
if index != fast_pos[tuple(target)]:
|
||||
force = forces[index]
|
||||
fastest = fast_pos[tuple(target)]
|
||||
# TODO use relative weight?
|
||||
forces[fastest] += 0.5*force
|
||||
forces[index] *= 0.5
|
||||
new_f[self.n != 0] = forces
|
||||
|
||||
|
||||
self.f = new_f
|
||||
|
||||
iterations += 1
|
||||
|
||||
# final calculation
|
||||
f_length = np.sqrt(np.sum(np.square(self.f), axis=3, keepdims=True))
|
||||
f_direction = self.f / f_length
|
||||
f_direction[f_length[:, :, :, 0] == 0] = 0
|
||||
velocity = f_direction * np.sqrt(f_length) / np.reshape(self.n, self.field + (1,)) # TODO replace self.n by mass
|
||||
velocity[self.n == 0] = 0
|
||||
#timestep = min(1, 0.5 / np.max(np.sqrt(np.sum(np.square(velocity), axis=3))))
|
||||
new_pos = self.true_pos + velocity * timestep
|
||||
new_pos_round = np.round(new_pos)
|
||||
moved = np.logical_or.reduce(new_pos_round[:, :, :] != [0, 0, 0], axis=3)
|
||||
not_moved = np.logical_and.reduce(new_pos_round[:, :, :] == [0, 0, 0], axis=3)
|
||||
pos_change_targets = (new_pos_round[moved] + self.pos_indices[moved]).astype(np.int)
|
||||
movers = self.pos_indices[moved]
|
||||
|
||||
print('timestep: %f' % timestep)
|
||||
|
||||
update_n = np.zeros(self.n.shape, np.int)
|
||||
update_f = np.zeros(self.f.shape)
|
||||
update_u = np.zeros(self.u.shape)
|
||||
update_true_pos = np.zeros(self.true_pos.shape)
|
||||
|
||||
update_n[not_moved] = self.n[not_moved]
|
||||
update_f[not_moved, :] = self.f[not_moved, :]
|
||||
update_u[not_moved, :] = velocity[not_moved, :]
|
||||
update_true_pos[not_moved, :] = new_pos[not_moved, :]
|
||||
|
||||
for indice in range(len(movers)):
|
||||
mover = movers[indice]
|
||||
target = pos_change_targets[indice]
|
||||
update_n[target[0], target[1], target[2]] = self.n[mover[0], mover[1], mover[2]]
|
||||
update_f[target[0], target[1], target[2], :] = self.f[mover[0], mover[1], mover[2], :]
|
||||
update_u[target[0], target[1], target[2], :] = velocity[mover[0], mover[1], mover[2], :]
|
||||
update_true_pos[target[0], target[1], target[2], :] = new_pos[mover[0], mover[1], mover[2], :] - new_pos_round[mover[0], mover[1], mover[2], :]
|
||||
|
||||
self.n = update_n
|
||||
self.f = update_f
|
||||
self.u = update_u
|
||||
self.true_pos = update_true_pos
|
||||
|
||||
print(1.0 / (time.time() - self.time))
|
||||
self.time = time.time()
|
||||
glutPostRedisplay()
|
||||
|
||||
|
@ -233,7 +454,7 @@ class Client:
|
|||
self.opening += 0.25
|
||||
|
||||
if key == b'+':
|
||||
self.state = (self.state +1) % 3
|
||||
self.state = (self.state + 1) % 3
|
||||
|
||||
if key == b'r':
|
||||
print(self.cx, self.cy, self.opening)
|
||||
|
|
|
@ -1,24 +0,0 @@
|
|||
class FluidSimParameter:
|
||||
viscosity = 0.1 / 3.0
|
||||
# Pr = 1.0
|
||||
Pr = 1.0
|
||||
# vc = 1.0
|
||||
vc = 0.5
|
||||
|
||||
def __init__(self, height: int):
|
||||
self.t1 = 3 * self.viscosity + 0.5
|
||||
self.t2 = (2 * self.t1 - 1) / (2 * self.Pr) + 0.5
|
||||
self.g = (self.vc ** 2) / height
|
||||
|
||||
self.R = self.Pr * self.g * (height ** 3) / (self.viscosity ** 2)
|
||||
|
||||
|
||||
class MagmaParameter(FluidSimParameter):
|
||||
viscosity = 10 ** 19
|
||||
Pr = 10 ** 25
|
||||
|
||||
|
||||
class WaterParameter(FluidSimParameter):
|
||||
viscosity = 8.9 * 10 ** -4
|
||||
Pr = 7.56
|
||||
vc = 0.05
|
|
@ -1,185 +0,0 @@
|
|||
from FluidSim.StaggeredArray import StaggeredArray2D
|
||||
import numpy as np
|
||||
import scipy
|
||||
import scipy.sparse
|
||||
import scipy.sparse.linalg
|
||||
|
||||
class FluidSimulator2D:
|
||||
def __init__(self, x_n: int, y_n: int):
|
||||
self.x_n = x_n
|
||||
self.y_n = y_n
|
||||
|
||||
self.array = StaggeredArray2D(self.x_n, self.y_n)
|
||||
|
||||
self.coordinate_array = np.zeros((x_n, y_n, 2), dtype=np.int)
|
||||
for x in range(x_n):
|
||||
for y in range(y_n):
|
||||
self.coordinate_array[x, y, :] = x, y
|
||||
|
||||
def advect(self, field: np.ndarray, delta_t: float):
|
||||
u_x, u_y = self.array.get_velocity_arrays()
|
||||
u = np.stack([u_x, u_y], axis=2)
|
||||
|
||||
def runge_kutta_layer(input, time_elapsed, border_handling='clamp'):
|
||||
shifted_pos = np.round(self.coordinate_array - u * time_elapsed).astype(np.int) * (u < 0) +\
|
||||
(self.coordinate_array - u * time_elapsed).astype(np.int) * (u > 0) + \
|
||||
self.coordinate_array * (u == 0)
|
||||
# border handling
|
||||
if border_handling == 'clamp':
|
||||
shifted_pos = np.maximum(0, shifted_pos)
|
||||
shifted_pos[:, :, 0] = np.minimum(len(input), shifted_pos[:, :, 0])
|
||||
shifted_pos[:, :, 1] = np.minimum(len(input[0]), shifted_pos[:, :, 1])
|
||||
pass
|
||||
layer = np.zeros(field.shape, dtype=field.dtype)
|
||||
for x in range(self.x_n):
|
||||
for y in range(self.y_n):
|
||||
layer[x, y] = field[shifted_pos[x, y][0], shifted_pos[x, y][1]] - field[x, y]
|
||||
return layer
|
||||
|
||||
k1 = runge_kutta_layer(field, delta_t)
|
||||
|
||||
k2 = runge_kutta_layer(field + 0.5 * delta_t * k1, 0.5 * delta_t)
|
||||
|
||||
k3 = runge_kutta_layer(field + 0.75 * delta_t * k2, 0.75 * delta_t) # maybe 0.25 instead?
|
||||
|
||||
# new_field = field + 2.0 / 9.0 * delta_t * k1 + 3.0 / 9.0 * delta_t * k2 + 4.0 / 9.0 * delta_t * k3
|
||||
new_field = field + k1
|
||||
|
||||
return new_field
|
||||
|
||||
def get_timestep(self, f, h=1.0, k_cfl=1.0):
|
||||
f_length = np.max(np.sqrt(np.sum(np.square(f), axis=-1)))
|
||||
|
||||
u_x, u_y = self.array.get_velocity_arrays()
|
||||
u_length = np.max(np.sqrt(np.square(u_x) + np.square(u_y)))
|
||||
|
||||
# return k_cfl * h / (u_length + np.sqrt(h + f_length))
|
||||
return k_cfl * h / u_length
|
||||
|
||||
def update_velocity(self, timestep, border_handling='constant'):
|
||||
if border_handling == 'constant':
|
||||
p_diff_x = np.pad(self.array.p, [(0, 1), (0, 0)], mode='constant', constant_values=0) -\
|
||||
np.pad(self.array.p, [(1, 0), (0, 0)], mode='constant', constant_values=0)
|
||||
borders_fluid_x = np.pad(self.array.has_fluid, [(0, 1), (0, 0)], mode='constant', constant_values=False) +\
|
||||
np.pad(self.array.has_fluid, [(1, 0), (0, 0)], mode='constant', constant_values=False)
|
||||
|
||||
p_diff_y = np.pad(self.array.p, [(0, 0), (0, 1)], mode='constant', constant_values=0) -\
|
||||
np.pad(self.array.p, [(0, 0), (1, 0)], mode='constant', constant_values=0)
|
||||
borders_fluid_y = np.pad(self.array.has_fluid, [(0, 0), (0, 1)], mode='constant', constant_values=False) +\
|
||||
np.pad(self.array.has_fluid, [(0, 0), (1, 0)], mode='constant', constant_values=False)
|
||||
else:
|
||||
p_diff_x = 0
|
||||
p_diff_y = 0
|
||||
borders_fluid_x = False
|
||||
borders_fluid_y = False
|
||||
|
||||
u_x_new = self.array.u_x - (timestep * p_diff_x) * (1.0 * borders_fluid_x)
|
||||
u_y_new = self.array.u_y - (timestep * p_diff_y) * (1.0 * borders_fluid_y)
|
||||
|
||||
# clear all components that do not border the fluid
|
||||
u_x_new *= (1.0 * borders_fluid_x)
|
||||
u_y_new *= (1.0 * borders_fluid_y)
|
||||
|
||||
return u_x_new, u_y_new
|
||||
|
||||
def calculate_divergence(self, h=1.0):
|
||||
dx_u = (self.array.u_x[1:, :] - self.array.u_x[:-1, :]) / h
|
||||
dy_u = (self.array.u_y[:, 1:] - self.array.u_y[:, -1]) / h
|
||||
|
||||
return dx_u + dy_u
|
||||
|
||||
def pressure_solve(self, divergence):
|
||||
new_p = np.zeros((self.array.x_n, self.array.y_n))
|
||||
connection_matrix = np.zeros((self.array.x_n * self.array.y_n, self.array.x_n * self.array.y_n))
|
||||
flat_divergence = np.zeros((self.array.x_n * self.array.y_n))
|
||||
|
||||
for x in range(self.array.x_n):
|
||||
for y in range(self.array.y_n):
|
||||
flat_divergence[x * self.array.y_n + y] = divergence[x, y]
|
||||
|
||||
neighbors = 4
|
||||
if x == 0:
|
||||
neighbors -= 1
|
||||
else:
|
||||
connection_matrix[x * self.array.y_n + y, (x - 1) * self.array.y_n + y] = 1
|
||||
if y == 0:
|
||||
neighbors -= 1
|
||||
else:
|
||||
connection_matrix[x * self.array.y_n + y, x * self.array.y_n + y - 1] = 1
|
||||
if x == self.array.x_n - 1:
|
||||
neighbors -= 1
|
||||
else:
|
||||
connection_matrix[x * self.array.y_n + y, (x + 1) * self.array.y_n + y] = 1
|
||||
if y == self.array.y_n - 1:
|
||||
neighbors -= 1
|
||||
else:
|
||||
connection_matrix[x * self.array.y_n + y, x * self.array.y_n + y + 1] = 1
|
||||
|
||||
connection_matrix[x * self.array.y_n + y, x * self.array.y_n + y] = -neighbors
|
||||
|
||||
p = scipy.sparse.linalg.spsolve(connection_matrix, -flat_divergence)
|
||||
|
||||
for x in range(self.array.x_n):
|
||||
for y in range(self.array.y_n):
|
||||
new_p[x, y] = p[x * self.array.y_n + y]
|
||||
return new_p
|
||||
|
||||
def timestep(self, external_f, h=1.0, k_cfl=1.0):
|
||||
"""
|
||||
:param external_f: external forces to be applied
|
||||
:param h: grid size
|
||||
:param k_cfl: speed up multiplier (reduces accuracy if > 1.0. Does not make much sense if smaller than 1.0)
|
||||
:return:
|
||||
"""
|
||||
delta_t = self.get_timestep(external_f, h, k_cfl)
|
||||
|
||||
has_fluid = self.advect(self.array.has_fluid * 1.0, delta_t)
|
||||
self.array.density = self.advect(self.array.density, delta_t)
|
||||
|
||||
# temp_u_x = self.advect(self.array.u_x, delta_t)
|
||||
# temp_u_y = self.advect(self.array.u_y, delta_t)
|
||||
# self.array.u_x = temp_u_x
|
||||
# self.array.u_y = temp_u_y
|
||||
#TODO advect velocity
|
||||
test_u = np.stack(self.array.get_velocity_arrays(), axis=2)
|
||||
test = self.advect(np.stack(self.array.get_velocity_arrays(), axis=2), delta_t)
|
||||
|
||||
# TODO maybe use dynamic threshold to conserve amount of cells containing fluid
|
||||
self.array.has_fluid = has_fluid >= 0.5
|
||||
# add more stuff to advect here. For example temperature, density, and other things. Maybe advect velocity.
|
||||
|
||||
# self.array.u_x, self.array.u_y = self.update_velocity(delta_t)
|
||||
# TODO add forces (a = F / m) -> add a to u
|
||||
|
||||
dx_u = (self.array.u_x[1:, :] - self.array.u_x[:-1, :]) / h
|
||||
dy_u = (self.array.u_y[:, 1:] - self.array.u_y[:, -1]) / h
|
||||
|
||||
dx_u = self.advect(dx_u, delta_t)
|
||||
dy_u = self.advect(dy_u, delta_t)
|
||||
|
||||
divergence = dx_u + dy_u
|
||||
# divergence = self.calculate_divergence(h)
|
||||
|
||||
self.array.p = self.pressure_solve(divergence)
|
||||
|
||||
self.array.u_x, self.array.u_y = self.update_velocity(delta_t)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
fs = FluidSimulator2D(50, 50)
|
||||
|
||||
fs.array.has_fluid[10, 10] = True
|
||||
|
||||
for i in range(100):
|
||||
fs.timestep(0)
|
||||
print(i)
|
||||
|
||||
print(fs.array.has_fluid[10, 10])
|
||||
print(np.sum(fs.array.has_fluid * 1.0))
|
||||
# test = fs.advect(fs.array.has_fluid * 1.0, 1.0)
|
||||
#
|
||||
# test2 = fs.update_velocity(1.0)
|
||||
#
|
||||
# test3 = fs.calculate_divergence()
|
||||
#
|
||||
# test4 = fs.pressure_solve(test3)
|
|
@ -1,353 +0,0 @@
|
|||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from FluidSim.FluidSimParameters import *
|
||||
|
||||
"""
|
||||
Create Your Own Lattice Boltzmann Simulation (With Python)
|
||||
Philip Mocz (2020) Princeton Univeristy, @PMocz
|
||||
Simulate flow past cylinder
|
||||
for an isothermal fluid
|
||||
"""
|
||||
|
||||
|
||||
def main():
|
||||
""" Finite Volume simulation """
|
||||
|
||||
# Simulation parameters
|
||||
epsilon = 0.000000001
|
||||
Nx = 400 # resolution x-dir
|
||||
Ny = 100 # resolution y-dir
|
||||
rho0 = 1 # average density
|
||||
tau = 0.6 # collision timescale
|
||||
Nt = 80000 # number of timesteps
|
||||
plotRealTime = True # switch on for plotting as the simulation goes along
|
||||
render_frequency = 10
|
||||
close_up_frequency = 10
|
||||
friction = 0.0001
|
||||
|
||||
params = FluidSimParameter(Ny)
|
||||
# params = WaterParameter(Ny)
|
||||
# params = MagmaParameter(Ny)
|
||||
|
||||
# Lattice speeds / weights
|
||||
NL = 9
|
||||
idxs = np.arange(NL)
|
||||
cxs = np.array([0, 0, 1, 1, 1, 0, -1, -1, -1])
|
||||
cys = np.array([0, 1, 1, 0, -1, -1, -1, 0, 1])
|
||||
weights = np.array([4 / 9, 1 / 9, 1 / 36, 1 / 9, 1 / 36, 1 / 9, 1 / 36, 1 / 9, 1 / 36]) # sums to 1
|
||||
xx, yy = np.meshgrid(range(Nx), range(Ny))
|
||||
|
||||
# Initial Conditions
|
||||
N = np.ones((Ny, Nx, NL)) # * rho0 / NL
|
||||
temperature = np.ones((Ny, Nx, NL), np.float) # * rho0 / NL
|
||||
|
||||
tracked_fluid = np.zeros((Ny, Nx, NL), np.float) # * rho0 / NL
|
||||
tracked_fluid[50:, :, 0] = 1
|
||||
|
||||
has_fluid = np.ones((Ny, Nx), dtype=np.bool)
|
||||
has_fluid[int(Ny/2):, :] = False
|
||||
np.random.seed(42)
|
||||
N += 0.01 * np.random.randn(Ny, Nx, NL)
|
||||
X, Y = np.meshgrid(range(Nx), range(Ny))
|
||||
N[:, :, 3] += 2 * (1 + 0.2 * np.cos(2 * np.pi * X / Nx * 4))
|
||||
# N[:, :, 5] += 1
|
||||
rho = np.sum(N, 2)
|
||||
temperature_rho = np.sum(temperature, 2)
|
||||
for i in idxs:
|
||||
N[:, :, i] *= rho0 / rho
|
||||
temperature[:, :, i] *= 1 / temperature_rho
|
||||
# N[50:, :] = 0
|
||||
temperature[:, :] = 0
|
||||
# temperature += 0.01 * np.random.randn(Ny, Nx, NL)
|
||||
|
||||
|
||||
# Cylinder boundary
|
||||
X, Y = np.meshgrid(range(Nx), range(Ny))
|
||||
|
||||
cylinder = (X - Nx / 4) ** 2 + (Y - Ny / 2) ** 2 < (Ny / 4) ** 2
|
||||
cylinder[:, :] = False
|
||||
|
||||
N[cylinder] = 0
|
||||
N[0, :] = 0
|
||||
N[Ny - 1, :] = 0
|
||||
|
||||
temperature[cylinder] = 0
|
||||
|
||||
tracked_fluid[cylinder] = 0
|
||||
# N[int(Ny/2):, :] = 0
|
||||
|
||||
has_fluid[cylinder] = False
|
||||
has_fluid[0, :] = False
|
||||
has_fluid[Ny - 1, :] = False
|
||||
|
||||
# for i in idxs:
|
||||
# N[:, :, i] *= has_fluid
|
||||
|
||||
# Prep figure
|
||||
fig = plt.figure(figsize=(4, 2), dpi=80)
|
||||
|
||||
reflection_mapping = [0, 5, 6, 7, 8, 1, 2, 3, 4]
|
||||
# Simulation Main Loop
|
||||
for it in range(Nt):
|
||||
print(it)
|
||||
|
||||
# Drift
|
||||
new_has_fluid = np.zeros((Ny, Nx))
|
||||
F_sum = np.sum(N, 2)
|
||||
for i, cx, cy in zip(idxs, cxs, cys):
|
||||
F_part = N[:, :, i] / F_sum
|
||||
F_part[F_sum == 0] = 0
|
||||
to_move = F_part * (has_fluid * 1.0)
|
||||
to_move = (np.roll(to_move, cx, axis=1))
|
||||
to_move = (np.roll(to_move, cy, axis=0))
|
||||
|
||||
new_has_fluid += to_move
|
||||
|
||||
N[:, :, i] = np.roll(N[:, :, i], cx, axis=1)
|
||||
N[:, :, i] = np.roll(N[:, :, i], cy, axis=0)
|
||||
|
||||
temperature[:, :, i] = np.roll(temperature[:, :, i], cx, axis=1)
|
||||
temperature[:, :, i] = np.roll(temperature[:, :, i], cy, axis=0)
|
||||
|
||||
tracked_fluid[:, :, i] = np.roll(tracked_fluid[:, :, i], cx, axis=1)
|
||||
tracked_fluid[:, :, i] = np.roll(tracked_fluid[:, :, i], cy, axis=0)
|
||||
|
||||
# has_fluid = new_has_fluid > 0.5
|
||||
# new_has_fluid[F_sum == 0] += has_fluid[F_sum == 0] * 1.0
|
||||
# new_has_fluid[(np.abs(F_sum) < 0.000000001)] = 0
|
||||
#
|
||||
# fluid_sum = np.sum(has_fluid * 1.0)
|
||||
# has_fluid = (new_has_fluid / np.sum(new_has_fluid * 1.0)) * fluid_sum
|
||||
#
|
||||
# print('fluid_cells: %d' % np.sum(has_fluid * 1))
|
||||
|
||||
# for i in idxs:
|
||||
# N[:, :, i] *= has_fluid
|
||||
|
||||
bndry = np.zeros((Ny, Nx), dtype=np.bool)
|
||||
bndry[0, :] = True
|
||||
bndry[Ny - 1, :] = True
|
||||
# bndry[:, 0] = True
|
||||
# bndry[:, Nx - 1] = True
|
||||
bndry = np.logical_or(bndry, cylinder)
|
||||
|
||||
# bndry = np.logical_or(bndry, has_fluid < 0.5)
|
||||
|
||||
# Set reflective boundaries
|
||||
bndryN = N[bndry, :]
|
||||
bndryN = bndryN[:, reflection_mapping]
|
||||
|
||||
bndryTemp = temperature[bndry, :]
|
||||
bndryTemp = bndryTemp[:, reflection_mapping]
|
||||
|
||||
bndryTracked = tracked_fluid[bndry, :]
|
||||
bndryTracked = bndryTracked[:, reflection_mapping]
|
||||
|
||||
sum_f = np.sum(N)
|
||||
print('Sum of Particles: %f' % sum_f)
|
||||
print('Sum of Temperature: %f' % np.sum(temperature))
|
||||
print('Sum of tacked particles: %f' % np.sum(tracked_fluid))
|
||||
|
||||
# sum_f_cyl = np.sum(N[cylinder])
|
||||
# print('Sum of Forces in cylinder: %f' % sum_f_cyl)
|
||||
|
||||
# sum_f_inner_cyl = np.sum(N[inner_cylinder])
|
||||
# print('Sum of Forces in inner cylinder: %f' % sum_f_inner_cyl)
|
||||
|
||||
# if sum_f > 4000000.000000:
|
||||
# test = 1
|
||||
|
||||
# N[Ny - 1, :, 5] += 0.1
|
||||
# N[0, :, 1] -= 0.1
|
||||
# N[0, :, 5] += 0.1
|
||||
# N[Ny - 1, :, 1] -= 0.1
|
||||
|
||||
# Calculate fluid variables
|
||||
rho = np.sum(N, 2)
|
||||
temp_rho = np.sum(temperature, 2)
|
||||
|
||||
tracked_rho = np.sum(tracked_fluid, 2)
|
||||
|
||||
ux = np.sum(N * cxs, 2) / rho
|
||||
uy = np.sum(N * cys, 2) / rho
|
||||
|
||||
ux[(np.abs(rho) < epsilon)] = 0
|
||||
uy[(np.abs(rho) < epsilon)] = 0
|
||||
|
||||
g = -params.g * (temp_rho - yy / Ny)
|
||||
|
||||
uy1 = (uy + g * params.t1 * (tracked_rho * 0.9 + 0.1))
|
||||
uy2 = (uy + g * params.t2 * (tracked_rho * 0.9 + 0.1))
|
||||
|
||||
# uy[np.abs(rho) >= epsilon] += g[np.abs(rho) >= epsilon] / 2.0
|
||||
# uy += g / 2.0
|
||||
|
||||
# u_length = np.maximum(np.abs(ux), np.abs(uy))
|
||||
|
||||
# safe guard against supersonic streams WIP
|
||||
u_length1 = np.sqrt(np.square(ux) + np.square(uy1))
|
||||
u_length2 = np.sqrt(np.square(ux) + np.square(uy2))
|
||||
|
||||
u_max_length1 = np.max(u_length1)
|
||||
u_max_length2 = np.max(u_length2)
|
||||
u_max_length = max(u_max_length1, u_max_length2)
|
||||
|
||||
if u_max_length > 2:
|
||||
test = 1
|
||||
|
||||
if u_max_length > np.sqrt(2):
|
||||
ux = (ux / u_max_length) * np.sqrt(2)
|
||||
uy1 = (uy1 / u_max_length) * np.sqrt(2)
|
||||
uy2 = (uy2 / u_max_length) * np.sqrt(2)
|
||||
|
||||
# apply friction
|
||||
ux *= (1 - friction)
|
||||
uy1 *= (1 - friction)
|
||||
uy2 *= (1 - friction)
|
||||
|
||||
print('max vector part: %f' % u_max_length)
|
||||
# ux /= u_max_length
|
||||
# uy /= u_max_length
|
||||
|
||||
# scale = abs(np.max(np.maximum(np.abs(ux), np.abs(uy))) - 1.0) < epsilon
|
||||
# if scale:
|
||||
# g = 0.01 * (temp_rho - yy / Ny)
|
||||
#
|
||||
# # F = np.zeros((Ny, Nx), dtype=np.bool)
|
||||
# # F = -0.1 * rho
|
||||
#
|
||||
# # uy[np.abs(rho) >= epsilon] += tau * F[np.abs(rho) >= epsilon] / rho[np.abs(rho) >= epsilon]
|
||||
# uy[np.abs(rho) >= epsilon] += g[np.abs(rho) >= epsilon] / 2.0
|
||||
#
|
||||
# u_length = np.maximum(np.abs(ux), np.abs(uy))
|
||||
# u_max_length = np.max(u_length)
|
||||
#
|
||||
# print('max vector part: %f' % u_max_length)
|
||||
#
|
||||
# ux /= u_max_length
|
||||
# uy /= u_max_length
|
||||
|
||||
# print('minimum rho: %f' % np.min(np.abs(rho)))
|
||||
# print('Maximum N: %f' % np.max(N))
|
||||
# print('Minimum N: %f' % np.min(N))
|
||||
|
||||
# Apply Collision
|
||||
temperature_eq = np.zeros(temperature.shape)
|
||||
tracked_eq = np.zeros(temperature.shape)
|
||||
Neq = np.zeros(N.shape)
|
||||
for i, cx, cy, w in zip(idxs, cxs, cys, weights):
|
||||
Neq[:, :, i] = rho * w * (
|
||||
1 + 3 * (cx * ux + cy * uy1) + 9 * (cx * ux + cy * uy1) ** 2 / 2 - 3 * (ux ** 2 + uy1 ** 2) / 2)
|
||||
|
||||
temperature_eq[:, :, i] = temp_rho * w * (
|
||||
1 + 3 * (cx * ux + cy * uy2) + 9 * (cx * ux + cy * uy2) ** 2 / 2 - 3 * (ux ** 2 + uy2 ** 2) / 2)
|
||||
|
||||
tracked_eq[:, :, i] = tracked_rho * w * (
|
||||
1 + 3 * (cx * ux + cy * uy1) + 9 * (cx * ux + cy * uy1) ** 2 / 2 - 3 * (ux ** 2 + uy1 ** 2) / 2)
|
||||
# test1 = np.sum(Neq)
|
||||
test2 = np.sum(N-Neq)
|
||||
if abs(test2) > 0.0001:
|
||||
test = ''
|
||||
|
||||
print('Overall change: %f' % test2)
|
||||
|
||||
n_pre_sum = np.sum(N[np.logical_not(bndry)])
|
||||
temperature_pre_sum = np.sum(temperature[np.logical_not(bndry)])
|
||||
|
||||
N += -(1.0 / params.t1) * (N - Neq)
|
||||
temperature += -(1.0 / params.t2) * (temperature - temperature_eq)
|
||||
tracked_fluid += -(1.0 / params.t1) * (tracked_fluid - tracked_eq)
|
||||
|
||||
# Apply boundary
|
||||
N[bndry, :] = bndryN
|
||||
temperature[bndry, :] = bndryTemp
|
||||
tracked_fluid[bndry, :] = bndryTracked
|
||||
|
||||
# temperature[0, :, 0] = 0
|
||||
# temperature[1, :, 0] = 0
|
||||
|
||||
temperature[0, :, 0] /= 2
|
||||
temperature[1, :, 0] /= 2
|
||||
|
||||
if it <= 3000:
|
||||
temperature[Ny - 1, :, 0] = 1
|
||||
temperature[Ny - 2, :, 0] = 1
|
||||
|
||||
# n_sum = np.sum(N, 2)
|
||||
# n_sum_min = np.min(n_sum)
|
||||
# if n_sum_min < 0:
|
||||
# N[np.logical_not(bndry)] += abs(n_sum_min)
|
||||
# N[np.logical_not(bndry)] /= np.sum(N[np.logical_not(bndry)])
|
||||
# N[np.logical_not(bndry)] *= n_pre_sum
|
||||
# print('Sum of Forces: %f' % np.sum(N))
|
||||
|
||||
# temperature_sum = np.sum(temperature, 2)
|
||||
# temperature_sum_min = np.min(temperature_sum)
|
||||
# if temperature_sum_min < 0:
|
||||
# temperature[np.logical_not(bndry)] += abs(temperature_sum_min)
|
||||
# temperature[np.logical_not(bndry)] /= np.sum(temperature[np.logical_not(bndry)])
|
||||
# temperature[np.logical_not(bndry)] *= temperature_pre_sum
|
||||
# print('Sum of Temperature: %f' % np.sum(temperature))
|
||||
|
||||
no_cylinder_mask = np.sum(N, 2) != 0
|
||||
print('min N: %f' % np.min(np.sum(N, 2)[no_cylinder_mask]))
|
||||
print('max N: %f' % np.max(np.sum(N, 2)))
|
||||
|
||||
print('min Temp: %f' % np.min(np.sum(temperature, 2)[no_cylinder_mask]))
|
||||
print('max Temp: %f' % np.max(np.sum(temperature, 2)))
|
||||
|
||||
if it > render_frequency:
|
||||
render_frequency = close_up_frequency
|
||||
# plot in real time - color 1/2 particles blue, other half red
|
||||
if (plotRealTime and (it % render_frequency) == 0) or (it == Nt - 1):
|
||||
fig.clear()
|
||||
plt.cla()
|
||||
ux[cylinder] = 0
|
||||
uy[cylinder] = 0
|
||||
vorticity = (np.roll(ux, -1, axis=0) - np.roll(ux, 1, axis=0)) - (
|
||||
np.roll(uy, -1, axis=1) - np.roll(uy, 1, axis=1))
|
||||
vorticity[cylinder] = np.nan
|
||||
|
||||
# vorticity *= has_fluid
|
||||
|
||||
cmap = plt.cm.bwr
|
||||
cmap.set_bad('black')
|
||||
|
||||
plt.subplot(2, 2, 1)
|
||||
plt.imshow(vorticity, cmap='bwr')
|
||||
plt.clim(-.1, .1)
|
||||
# plt.imshow(has_fluid * 2.0 - 1.0, cmap='bwr')
|
||||
# plt.imshow(bndry * 2.0 - 1.0, cmap='bwr')
|
||||
# plt.imshow(np.sum(N, 2) * 2.0 - 1.0, cmap='bwr')
|
||||
# plt.imshow((np.sum(temperature, 2) / np.max(np.sum(temperature, 2))) * 2.0 - 1.0, cmap='bwr')
|
||||
plt.subplot(2, 2, 2)
|
||||
max_temp = np.max(np.sum(temperature, 2))
|
||||
# plt.imshow(np.sum(temperature, 2) / max_temp * 2.0 - 1.0, cmap='bwr')
|
||||
plt.imshow(np.sum(temperature, 2) * 2.0 - 1.0, cmap='bwr')
|
||||
plt.clim(-.1, .1)
|
||||
|
||||
plt.subplot(2, 2, 3)
|
||||
max_N = np.max(np.sum(N, 2))
|
||||
plt.imshow(np.sum(N, 2) / max_N * 2.0 - 1.0, cmap='bwr')
|
||||
plt.clim(-.1, .1)
|
||||
|
||||
plt.subplot(2, 2, 4)
|
||||
plt.imshow(np.sum(tracked_fluid, 2) * 2.0 - 1.0, cmap='bwr')
|
||||
plt.clim(-.1, .1)
|
||||
|
||||
# ax = plt.gca()
|
||||
# ax.invert_yaxis()
|
||||
# ax.get_xaxis().set_visible(False)
|
||||
# ax.get_yaxis().set_visible(False)
|
||||
# ax.set_aspect('equal')
|
||||
plt.pause(0.001)
|
||||
|
||||
# Save figure
|
||||
# plt.savefig('latticeboltzmann.png', dpi=240)
|
||||
plt.show()
|
||||
|
||||
return 0
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
|
@ -1,108 +0,0 @@
|
|||
import numpy as np
|
||||
from scipy.signal import convolve
|
||||
|
||||
|
||||
class StaggeredArray2D:
|
||||
def __init__(self, x_n, y_n):
|
||||
"""
|
||||
creates a staggered array
|
||||
:param x_n: x size of the array
|
||||
:param y_n: y size of the array
|
||||
"""
|
||||
self.x_n = x_n
|
||||
self.y_n = y_n
|
||||
self.p = np.zeros((x_n, y_n), dtype=np.float)
|
||||
|
||||
self.u_x = np.zeros((x_n + 1, y_n), dtype=np.float)
|
||||
self.u_y = np.zeros((x_n, y_n + 1), dtype=np.float)
|
||||
|
||||
self.has_fluid = np.zeros((x_n, y_n), dtype=np.bool)
|
||||
self.density = np.zeros((x_n, y_n), dtype=np.float)
|
||||
|
||||
def get_velocity(self, x, y):
|
||||
"""
|
||||
get mid point value for the coordinates
|
||||
:param x: x coordinate
|
||||
:param y: y coordinate
|
||||
:return:
|
||||
"""
|
||||
assert 0 <= x < self.x_n, 'x value out of bounds!'
|
||||
assert 0 <= y < self.y_n, 'y value out of bounds!'
|
||||
|
||||
lower_x = self.u_x[x, y]
|
||||
upper_x = self.u_x[x + 1, y]
|
||||
|
||||
lower_y = self.u_y[x, y]
|
||||
upper_y = self.u_y[x, y + 1]
|
||||
|
||||
return (lower_x + upper_x) / 2.0, (lower_y + upper_y) / 2.0
|
||||
|
||||
def get_velocity_arrays(self):
|
||||
c_x = np.array([[0.5], [0.5]])
|
||||
u_x = convolve(self.u_x, c_x, mode='valid')
|
||||
|
||||
c_y = np.array([[0.5, 0.5]])
|
||||
u_y = convolve(self.u_y, c_y, mode='valid')
|
||||
|
||||
return u_x, u_y
|
||||
|
||||
|
||||
class StaggeredArray3D:
|
||||
def __init__(self, x_n, y_n, z_n):
|
||||
"""
|
||||
creates a staggered array
|
||||
:param x_n: x size of the array
|
||||
:param y_n: y size of the array
|
||||
:param z_n: z size of the array
|
||||
"""
|
||||
|
||||
self.x_n = x_n
|
||||
self.y_n = y_n
|
||||
self.z_n = z_n
|
||||
|
||||
self.p = np.zeros((x_n, y_n, z_n), dtype=np.float)
|
||||
|
||||
self.u_x = np.zeros((x_n + 1, y_n, z_n), dtype=np.float)
|
||||
self.u_y = np.zeros((x_n, y_n + 1, z_n), dtype=np.float)
|
||||
self.u_z = np.zeros((x_n, y_n, z_n + 1), dtype=np.float)
|
||||
|
||||
self.has_fluid = np.zeros((x_n, y_n, z_n), dtype=np.bool)
|
||||
|
||||
def get_velocity(self, x, y, z):
|
||||
"""
|
||||
get mid point value for the coordinates
|
||||
:param x: x coordinate
|
||||
:param y: y coordinate
|
||||
:param z: z coordinate
|
||||
:return:
|
||||
"""
|
||||
assert 0 <= x < self.x_n, 'x value out of bounds!'
|
||||
assert 0 <= y < self.y_n, 'y value out of bounds!'
|
||||
assert 0 <= z < self.z_n, 'y value out of bounds!'
|
||||
|
||||
lower_x = self.u_x[x, y, z]
|
||||
upper_x = self.u_x[x + 1, y, z]
|
||||
|
||||
lower_y = self.u_y[x, y, z]
|
||||
upper_y = self.u_y[x, y + 1, z]
|
||||
|
||||
lower_z = self.u_z[x, y, z]
|
||||
upper_z = self.u_z[x, y, z + 1]
|
||||
|
||||
return (lower_x + upper_x) / 2.0, (lower_y + upper_y) / 2.0, (lower_z + upper_z) / 2.0
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
sa = StaggeredArray2D(10, 10)
|
||||
|
||||
for x in range(11):
|
||||
for y in range(10):
|
||||
sa.u_x[x, y] = y
|
||||
|
||||
for x in range(10):
|
||||
for y in range(11):
|
||||
sa.u_y[x, y] = x
|
||||
|
||||
ux, uy = sa.get_velocity_arrays()
|
||||
|
||||
ux2, uy2 = sa.get_velocity(0, 0)
|
|
@ -1,12 +1,8 @@
|
|||
from OpenGL.GLU import *
|
||||
from OpenGL.GL import *
|
||||
|
||||
import numpy as np
|
||||
|
||||
from OpenGL.GLU import gluErrorString
|
||||
from OpenGL.GL import glGetError, GL_NO_ERROR
|
||||
|
||||
class Renderable:
|
||||
def render(self, projMatrix, geometryRotMatrix, alternateprograms=None,
|
||||
preselected_program=None, projection_pos=None, rot_pos=None):
|
||||
def render(self, projMatrix, geometryRotMatrix, alternateprograms=None):
|
||||
pass
|
||||
|
||||
@staticmethod
|
||||
|
@ -19,4 +15,4 @@ class Renderable:
|
|||
else:
|
||||
print(hex(gl_error))
|
||||
return True
|
||||
return False
|
||||
return False
|
|
@ -15,56 +15,16 @@ from Objects.Renderable import Renderable
|
|||
|
||||
|
||||
class Structure(Renderable):
|
||||
def __init__(self, x_offset=0, y_offset=1, z_offset=0):
|
||||
def __init__(self):
|
||||
self.Objects = {}
|
||||
self.vais = {}
|
||||
self.dirty = True
|
||||
self.dirty_pos = True
|
||||
self.dirty_color = True
|
||||
self.dirty_size = True
|
||||
|
||||
self.x_offset = x_offset
|
||||
self.y_offset = y_offset
|
||||
self.z_offset = z_offset
|
||||
|
||||
@property
|
||||
def x_offset(self):
|
||||
return self._x_offset
|
||||
|
||||
@x_offset.setter
|
||||
def x_offset(self, value):
|
||||
self.dirty = True
|
||||
self.dirty_pos = True
|
||||
self._x_offset = value
|
||||
|
||||
@property
|
||||
def y_offset(self):
|
||||
return self._y_offset
|
||||
|
||||
@y_offset.setter
|
||||
def y_offset(self, value):
|
||||
self.dirty = True
|
||||
self.dirty_pos = True
|
||||
self._y_offset = value
|
||||
|
||||
@property
|
||||
def z_offset(self):
|
||||
return self._z_offset
|
||||
|
||||
@z_offset.setter
|
||||
def z_offset(self, value):
|
||||
self.dirty = True
|
||||
self.dirty_pos = True
|
||||
self._z_offset = value
|
||||
self.dirty = False
|
||||
|
||||
def addShape(self, program, shape):
|
||||
if not program in self.Objects.keys():
|
||||
self.Objects[program] = []
|
||||
self.Objects[program].append(shape)
|
||||
self.dirty = True
|
||||
self.dirty_color = True
|
||||
self.dirty_pos = True
|
||||
self.dirty_size = True
|
||||
|
||||
def removeShape(self, program, shape):
|
||||
if program in self.Objects.keys():
|
||||
|
@ -72,89 +32,72 @@ class Structure(Renderable):
|
|||
if len(self.Objects[program]) == 0:
|
||||
self.Objects.pop(program)
|
||||
self.dirty = True
|
||||
self.dirty_color = True
|
||||
self.dirty_pos = True
|
||||
self.dirty_size = True
|
||||
|
||||
def buildvertexArrays(self):
|
||||
if self.dirty:
|
||||
# self.clearVertexArrays()
|
||||
self.clearVertexArrays()
|
||||
glEnableClientState(GL_VERTEX_ARRAY)
|
||||
glEnableClientState(GL_TEXTURE_COORD_ARRAY)
|
||||
glEnableClientState(GL_NORMAL_ARRAY)
|
||||
glEnableClientState(GL_COLOR_ARRAY)
|
||||
self.vais = {}
|
||||
|
||||
for key, objects in self.Objects.items():
|
||||
needs_new_buffers = key not in self.vais.keys()
|
||||
if needs_new_buffers:
|
||||
tvai = GLuint(0)
|
||||
tpbi = GLuint(0)
|
||||
tcbi = GLuint(0)
|
||||
tsbi = GLuint(0)
|
||||
num = len(objects)
|
||||
else:
|
||||
tvai, tpbi, tcbi, tsbi, num = self.vais[key]
|
||||
if needs_new_buffers:
|
||||
glGenVertexArrays(1, tvai)
|
||||
tvai = GLuint(0)
|
||||
tpbi = GLuint(0)
|
||||
tcbi = GLuint(0)
|
||||
tsbi = GLuint(0)
|
||||
num = len(objects)
|
||||
|
||||
glGenVertexArrays(1, tvai)
|
||||
glBindVertexArray(tvai)
|
||||
if self.dirty_pos:
|
||||
if needs_new_buffers:
|
||||
vid = glGetAttribLocation(key, "in_position")
|
||||
glEnableVertexAttribArray(vid)
|
||||
|
||||
tpbi = glGenBuffers(1)
|
||||
glBindBuffer(GL_ARRAY_BUFFER, tpbi)
|
||||
positions = []
|
||||
vid = glGetAttribLocation(key, "in_position")
|
||||
glEnableVertexAttribArray(vid)
|
||||
|
||||
tpbi = glGenBuffers(1)
|
||||
glBindBuffer(GL_ARRAY_BUFFER, tpbi)
|
||||
positions = []
|
||||
for o in objects:
|
||||
positions.append(o.pos[0])
|
||||
positions.append(o.pos[1])
|
||||
positions.append(o.pos[2])
|
||||
glBufferData(GL_ARRAY_BUFFER, np.array(positions, dtype=np.float32), GL_STATIC_DRAW)
|
||||
glVertexAttribPointer(vid, 3, GL_FLOAT, GL_FALSE, 0, None)
|
||||
self.check_error("Could not create position buffer")
|
||||
|
||||
colors = []
|
||||
for o in objects:
|
||||
colors.append(o.color[0])
|
||||
colors.append(o.color[1])
|
||||
colors.append(o.color[2])
|
||||
tcbi = glGenBuffers(1)
|
||||
glBindBuffer(GL_ARRAY_BUFFER, tcbi)
|
||||
glBufferData(GL_ARRAY_BUFFER, np.array(colors, dtype=np.float32), GL_STATIC_DRAW)
|
||||
vc = glGetAttribLocation(key, "MyInColor")
|
||||
if vc != -1:
|
||||
glEnableVertexAttribArray(vc)
|
||||
glVertexAttribPointer(vc, 3, GL_FLOAT, GL_FALSE, 0, None)
|
||||
self.check_error("Could not create color buffer")
|
||||
|
||||
if hasattr(objects[0], 'size'):
|
||||
sizes = []
|
||||
for o in objects:
|
||||
positions.append(o.pos[0] + self.x_offset)
|
||||
positions.append(o.pos[1] + self.y_offset)
|
||||
positions.append(o.pos[2] + self.z_offset)
|
||||
glBufferData(GL_ARRAY_BUFFER, np.array(positions, dtype=np.float32), GL_STATIC_DRAW)
|
||||
if needs_new_buffers:
|
||||
glVertexAttribPointer(vid, 3, GL_FLOAT, GL_FALSE, 0, None)
|
||||
self.check_error("Could not create position buffer")
|
||||
|
||||
if self.dirty_color:
|
||||
colors = []
|
||||
for o in objects:
|
||||
colors.append(o.color[0])
|
||||
colors.append(o.color[1])
|
||||
colors.append(o.color[2])
|
||||
if needs_new_buffers:
|
||||
tcbi = glGenBuffers(1)
|
||||
glBindBuffer(GL_ARRAY_BUFFER, tcbi)
|
||||
glBufferData(GL_ARRAY_BUFFER, np.array(colors, dtype=np.float32), GL_STATIC_DRAW)
|
||||
if needs_new_buffers:
|
||||
vc = glGetAttribLocation(key, "MyInColor")
|
||||
if vc != -1:
|
||||
glEnableVertexAttribArray(vc)
|
||||
glVertexAttribPointer(vc, 3, GL_FLOAT, GL_FALSE, 0, None)
|
||||
self.check_error("Could not create color buffer")
|
||||
|
||||
if self.dirty_size:
|
||||
if hasattr(objects[0], 'size'):
|
||||
sizes = []
|
||||
for o in objects:
|
||||
sizes.append(o.size[0])
|
||||
sizes.append(o.size[1])
|
||||
sizes.append(o.size[2])
|
||||
if needs_new_buffers:
|
||||
tsbi = glGenBuffers(1)
|
||||
glBindBuffer(GL_ARRAY_BUFFER, tsbi)
|
||||
glBufferData(GL_ARRAY_BUFFER, np.array(sizes, dtype=np.float32), GL_STATIC_DRAW)
|
||||
if needs_new_buffers:
|
||||
vs = glGetAttribLocation(key, "MyInSize")
|
||||
if vs != -1:
|
||||
glEnableVertexAttribArray(vs)
|
||||
glVertexAttribPointer(vs, 3, GL_FLOAT, GL_FALSE, 0, None)
|
||||
self.check_error("Could not create size buffer")
|
||||
sizes.append(o.size[0])
|
||||
sizes.append(o.size[1])
|
||||
sizes.append(o.size[2])
|
||||
tsbi = glGenBuffers(1)
|
||||
glBindBuffer(GL_ARRAY_BUFFER, tsbi)
|
||||
glBufferData(GL_ARRAY_BUFFER, np.array(sizes, dtype=np.float32), GL_STATIC_DRAW)
|
||||
vs = glGetAttribLocation(key, "MyInSize")
|
||||
if vs != -1:
|
||||
glEnableVertexAttribArray(vs)
|
||||
glVertexAttribPointer(vs, 3, GL_FLOAT, GL_FALSE, 0, None)
|
||||
self.check_error("Could not create size buffer")
|
||||
|
||||
glBindVertexArray(0)
|
||||
self.vais[key] = (tvai, tpbi, tcbi, tsbi, num)
|
||||
self.dirty = False
|
||||
self.dirty_pos = False
|
||||
self.dirty_color = False
|
||||
self.dirty_size = False
|
||||
|
||||
def clearVertexArrays(self):
|
||||
temp = dict(self.vais)
|
||||
|
@ -172,39 +115,29 @@ class Structure(Renderable):
|
|||
glDeleteVertexArrays(1, vertex_array_ids[0])
|
||||
self.check_error("Could not destroy vertex array")
|
||||
|
||||
def render(self, projMatrix, geometryRotMatrix, alternateprograms=None,
|
||||
preselected_program=None, projection_pos=None, rot_pos=None):
|
||||
def render(self, projMatrix, geometryRotMatrix, alternateprograms=None):
|
||||
self.buildvertexArrays()
|
||||
for key, vertex_array_ids in self.vais.items():
|
||||
if alternateprograms == None:
|
||||
program_id = key
|
||||
else:
|
||||
assert key in alternateprograms.keys()
|
||||
assert key in alternateprograms
|
||||
program_id = alternateprograms[key]
|
||||
# check if a program was preloaded
|
||||
if preselected_program is not None:
|
||||
# if preloaded we only want to render the matching vertex arrays
|
||||
if preselected_program != program_id:
|
||||
continue
|
||||
else:
|
||||
glUseProgram(program_id)
|
||||
self.check_error("Renderingprogram is not initialized!")
|
||||
glUseProgram(program_id)
|
||||
self.check_error("Renderingprogram is not initialized!")
|
||||
|
||||
if rot_pos is None:
|
||||
rot = glGetUniformLocation(program_id, 'rotMatrix')
|
||||
glUniformMatrix3fv(rot, 1, GL_FALSE, np.array(geometryRotMatrix))
|
||||
projection = glGetUniformLocation(program_id, 'projModelViewMatrix')
|
||||
rot = glGetUniformLocation(program_id, 'rotMatrix')
|
||||
|
||||
if projection_pos is None:
|
||||
projection = glGetUniformLocation(program_id, 'projModelViewMatrix')
|
||||
glUniformMatrix4fv(projection, 1, GL_FALSE, np.array(projMatrix))
|
||||
glUniformMatrix4fv(projection, 1, GL_FALSE, np.array(projMatrix))
|
||||
glUniformMatrix3fv(rot, 1, GL_FALSE, np.array(geometryRotMatrix))
|
||||
|
||||
glBindVertexArray(vertex_array_ids[0])
|
||||
glDrawArrays(GL_POINTS, 0, vertex_array_ids[4])
|
||||
self.check_error("Rendering problem")
|
||||
|
||||
glBindVertexArray(0)
|
||||
if preselected_program is None:
|
||||
glUseProgram(0)
|
||||
glUseProgram(0)
|
||||
|
||||
def __eq__(self, other):
|
||||
if type(other) is type(self):
|
||||
|
@ -221,11 +154,9 @@ class CompoundStructure(Renderable):
|
|||
R: np.matrix = np.identity(3, np.float)):
|
||||
self.Structures.append((structure, M, R))
|
||||
|
||||
def render(self, projMatrix, geometryRotMatrix, alternateprograms=None,
|
||||
preselected_program=None, projection_pos=None, rot_pos=None):
|
||||
def render(self, projMatrix, geometryRotMatrix, alternateprograms=None):
|
||||
for (structure, M, R) in self.Structures:
|
||||
structure.render(M * projMatrix, R * geometryRotMatrix, alternateprograms,
|
||||
preselected_program, projection_pos, rot_pos)
|
||||
structure.render(M * projMatrix, R * geometryRotMatrix, alternateprograms)
|
||||
|
||||
def __eq__(self, other):
|
||||
if type(other) is type(self):
|
||||
|
|
496
Objects/World.py
496
Objects/World.py
|
@ -1,5 +1,3 @@
|
|||
import time
|
||||
|
||||
from Lights.Lights import Light
|
||||
from Objects.Objects import Object
|
||||
from Objects.Renderable import Renderable
|
||||
|
@ -9,22 +7,6 @@ from OpenGL.GLU import *
|
|||
from OpenGL.GL import *
|
||||
import math
|
||||
import numpy as np
|
||||
import random
|
||||
import sys
|
||||
import ctypes
|
||||
float_pointer = ctypes.POINTER(ctypes.c_float)
|
||||
# Plate Types
|
||||
SEA_PLATE = 0
|
||||
CONTINENTAL_PLATE = 1
|
||||
|
||||
# Rock types
|
||||
EMPTY = 0
|
||||
SEA_PLATE_STONE = 1
|
||||
MAGMATIC_STONE = 2
|
||||
METAMORPH_STONE = 3
|
||||
SEDIMENTAL_STONE = 4
|
||||
SEDIMENT = 5
|
||||
|
||||
|
||||
class WorldChunk(Structure):
|
||||
def __init__(self, width: int, length: int, height: int, programs: dict):
|
||||
|
@ -42,8 +24,6 @@ class WorldChunk(Structure):
|
|||
self.height = height
|
||||
self.programs = programs
|
||||
|
||||
self.objects = {}
|
||||
|
||||
for x in range(width):
|
||||
self.content.append([])
|
||||
self.visible.append([])
|
||||
|
@ -60,7 +40,6 @@ class WorldChunk(Structure):
|
|||
assert 0 <= z < self.height, 'Put out of bounds for z coordinate! Must be between 0 and %i' % self.height
|
||||
no_visibility_changes = (self.content[x][y][z] is None) == (new_object is None)
|
||||
|
||||
old_object = self.content[x][y][z]
|
||||
self.content[x][y][z] = new_object
|
||||
new_object.translate(translate(x, y, z))
|
||||
|
||||
|
@ -94,32 +73,6 @@ class WorldChunk(Structure):
|
|||
else:
|
||||
self.visible[x][y][z - 1] += change
|
||||
|
||||
# todo: add visibility check for object listing
|
||||
added = False
|
||||
if old_object is not None:
|
||||
if new_object is not None and type(old_object) == type(new_object):
|
||||
new_object.buffer_id = old_object.buffer_id
|
||||
self.objects[self.programs[type(old_object)]][old_object.buffer_id] = new_object
|
||||
added = True
|
||||
else:
|
||||
# todo: maybe replace the element with a placeholder that is skipped when rendering/ saving and have a
|
||||
# cleanup task, since this could be exploited to lower update rates
|
||||
leading = self.objects[self.programs[type(old_object)]][:old_object.buffer_id]
|
||||
following = self.objects[self.programs[type(old_object)]][old_object.buffer_id + 1:]
|
||||
for element in following:
|
||||
element.buffer_id -= 1
|
||||
self.objects[self.programs[type(old_object)]] = leading + following
|
||||
|
||||
if not added and new_object is not None:
|
||||
if self.programs[type(new_object)] not in self.objects.keys():
|
||||
self.objects[self.programs[type(new_object)]] = []
|
||||
new_object.buffer_id = len(self.objects[self.programs[type(new_object)]])
|
||||
self.objects[self.programs[type(new_object)]].append(new_object)
|
||||
|
||||
self.dirty = True
|
||||
self.dirty_pos = True
|
||||
self.dirty_color = True
|
||||
self.dirty_size = True
|
||||
return visible_carry_over
|
||||
|
||||
def get_object(self, x: int, y: int, z: int):
|
||||
|
@ -145,101 +98,86 @@ class WorldChunk(Structure):
|
|||
|
||||
def buildvertexArrays(self):
|
||||
if self.dirty:
|
||||
# self.clearVertexArrays()
|
||||
self.clearVertexArrays()
|
||||
glEnableClientState(GL_VERTEX_ARRAY)
|
||||
glEnableClientState(GL_TEXTURE_COORD_ARRAY)
|
||||
glEnableClientState(GL_NORMAL_ARRAY)
|
||||
glEnableClientState(GL_COLOR_ARRAY)
|
||||
self.vais = {}
|
||||
|
||||
for key, object_list in self.objects.items():
|
||||
needs_new_buffers = key not in self.vais.keys()
|
||||
if needs_new_buffers:
|
||||
tvai = GLuint(0)
|
||||
tpbi = GLuint(0)
|
||||
tcbi = GLuint(0)
|
||||
tsbi = GLuint(0)
|
||||
objects = {}
|
||||
counts = {}
|
||||
for x in range(self.width):
|
||||
for y in range(self.length):
|
||||
for z in range(self.height):
|
||||
if self.content[x][y][z] is not None: # and self.visible[x][y][z] > 0: TODO: check visibility...
|
||||
if self.programs[type(self.content[x][y][z])] not in objects.keys():
|
||||
objects[self.programs[type(self.content[x][y][z])]] = []
|
||||
counts[self.programs[type(self.content[x][y][z])]] = 0
|
||||
objects[self.programs[type(self.content[x][y][z])]].append(self.content[x][y][z])
|
||||
counts[self.programs[type(self.content[x][y][z])]] += 1
|
||||
|
||||
glGenVertexArrays(1, tvai)
|
||||
else:
|
||||
tvai, tpbi, tcbi, tsbi, old_len = self.vais[key]
|
||||
for key, object_list in objects.items():
|
||||
tvai = GLuint(0)
|
||||
tpbi = GLuint(0)
|
||||
tcbi = GLuint(0)
|
||||
tsbi = GLuint(0)
|
||||
|
||||
glGenVertexArrays(1, tvai)
|
||||
glBindVertexArray(tvai)
|
||||
|
||||
if self.dirty_pos:
|
||||
if needs_new_buffers:
|
||||
vid = glGetAttribLocation(key, "in_position")
|
||||
glEnableVertexAttribArray(vid)
|
||||
tpbi = glGenBuffers(1)
|
||||
glBindBuffer(GL_ARRAY_BUFFER, tpbi)
|
||||
positions = []
|
||||
for index, o in enumerate(object_list):
|
||||
o.buffer_id = index
|
||||
positions.append(o.pos[0] + self.x_offset)
|
||||
positions.append(o.pos[1] + self.y_offset)
|
||||
positions.append(o.pos[2] + self.z_offset)
|
||||
vid = glGetAttribLocation(key, "in_position")
|
||||
glEnableVertexAttribArray(vid)
|
||||
|
||||
glBufferData(GL_ARRAY_BUFFER, np.array(positions, dtype=np.float32), GL_STATIC_DRAW)
|
||||
tpbi = glGenBuffers(1)
|
||||
glBindBuffer(GL_ARRAY_BUFFER, tpbi)
|
||||
positions = []
|
||||
for o in object_list:
|
||||
positions.append(o.pos[0])
|
||||
positions.append(o.pos[1])
|
||||
positions.append(o.pos[2])
|
||||
glBufferData(GL_ARRAY_BUFFER, np.array(positions, dtype=np.float32), GL_STATIC_DRAW)
|
||||
glVertexAttribPointer(vid, 3, GL_FLOAT, GL_FALSE, 0, None)
|
||||
self.check_error("Could not create position buffer")
|
||||
|
||||
if needs_new_buffers:
|
||||
glVertexAttribPointer(vid, 3, GL_FLOAT, GL_FALSE, 0, None)
|
||||
self.check_error("Could not create position buffer")
|
||||
|
||||
if self.dirty_color:
|
||||
colors = []
|
||||
for o in object_list:
|
||||
colors.append(o.color[0])
|
||||
colors.append(o.color[1])
|
||||
colors.append(o.color[2])
|
||||
if needs_new_buffers:
|
||||
tcbi = glGenBuffers(1)
|
||||
glBindBuffer(GL_ARRAY_BUFFER, tcbi)
|
||||
if needs_new_buffers or old_len != len(object_list):
|
||||
glBufferData(GL_ARRAY_BUFFER, np.array(colors, dtype=np.float32), GL_STATIC_DRAW)
|
||||
else:
|
||||
# todo: check if this improves anything. Timewise it seems to be the same
|
||||
ptr = ctypes.cast(glMapBuffer(GL_ARRAY_BUFFER, GL_READ_WRITE), float_pointer)
|
||||
for index, value in enumerate(colors):
|
||||
ptr[index] = value
|
||||
glUnmapBuffer(GL_ARRAY_BUFFER)
|
||||
if needs_new_buffers:
|
||||
vc = glGetAttribLocation(key, "MyInColor")
|
||||
if vc != -1:
|
||||
glEnableVertexAttribArray(vc)
|
||||
glVertexAttribPointer(vc, 3, GL_FLOAT, GL_FALSE, 0, None)
|
||||
colors = []
|
||||
for o in object_list:
|
||||
colors.append(o.color[0])
|
||||
colors.append(o.color[1])
|
||||
colors.append(o.color[2])
|
||||
tcbi = glGenBuffers(1)
|
||||
glBindBuffer(GL_ARRAY_BUFFER, tcbi)
|
||||
glBufferData(GL_ARRAY_BUFFER, np.array(colors, dtype=np.float32), GL_STATIC_DRAW)
|
||||
vc = glGetAttribLocation(key, "MyInColor")
|
||||
if vc != -1:
|
||||
glEnableVertexAttribArray(vc)
|
||||
glVertexAttribPointer(vc, 3, GL_FLOAT, GL_FALSE, 0, None)
|
||||
self.check_error("Could not create color buffer")
|
||||
|
||||
if self.dirty_size:
|
||||
if hasattr(object_list[0], 'size'):
|
||||
sizes = []
|
||||
for o in object_list:
|
||||
sizes.append(o.size[0])
|
||||
sizes.append(o.size[1])
|
||||
sizes.append(o.size[2])
|
||||
if needs_new_buffers:
|
||||
tsbi = glGenBuffers(1)
|
||||
glBindBuffer(GL_ARRAY_BUFFER, tsbi)
|
||||
glBufferData(GL_ARRAY_BUFFER, np.array(sizes, dtype=np.float32), GL_STATIC_DRAW)
|
||||
if needs_new_buffers:
|
||||
vs = glGetAttribLocation(key, "MyInSize")
|
||||
if vs != -1:
|
||||
glEnableVertexAttribArray(vs)
|
||||
glVertexAttribPointer(vs, 3, GL_FLOAT, GL_FALSE, 0, None)
|
||||
if hasattr(object_list[0], 'size'):
|
||||
sizes = []
|
||||
for o in object_list:
|
||||
sizes.append(o.size[0])
|
||||
sizes.append(o.size[1])
|
||||
sizes.append(o.size[2])
|
||||
tsbi = glGenBuffers(1)
|
||||
glBindBuffer(GL_ARRAY_BUFFER, tsbi)
|
||||
glBufferData(GL_ARRAY_BUFFER, np.array(sizes, dtype=np.float32), GL_STATIC_DRAW)
|
||||
vs = glGetAttribLocation(key, "MyInSize")
|
||||
if vs != -1:
|
||||
glEnableVertexAttribArray(vs)
|
||||
glVertexAttribPointer(vs, 3, GL_FLOAT, GL_FALSE, 0, None)
|
||||
self.check_error("Could not create size buffer")
|
||||
|
||||
glBindVertexArray(0)
|
||||
self.vais[key] = (tvai, tpbi, tcbi, tsbi, len(object_list))
|
||||
self.vais[key] = (tvai, tpbi, tcbi, tsbi, counts[key])
|
||||
self.dirty = False
|
||||
self.dirty_pos = False
|
||||
self.dirty_color = False
|
||||
self.dirty_size = False
|
||||
|
||||
def render(self, proj_matrix, geometry_rot_matrix, alternate_programs=None,
|
||||
preselected_program=None, projection_pos=None, rot_pos=None):
|
||||
super(WorldChunk, self).render(proj_matrix, geometry_rot_matrix, alternate_programs,
|
||||
preselected_program, projection_pos, rot_pos)
|
||||
def render(self, proj_matrix, geometry_rot_matrix, alternate_programs=None):
|
||||
super(WorldChunk, self).render(proj_matrix, geometry_rot_matrix, alternate_programs)
|
||||
|
||||
for entity in self.entities:
|
||||
entity.render(proj_matrix, geometry_rot_matrix, alternate_programs,
|
||||
preselected_program, projection_pos, rot_pos)
|
||||
entity.render(proj_matrix, geometry_rot_matrix, alternate_programs)
|
||||
|
||||
def set_color(self, x: int, y: int, z: int, r: float, g: float, b: float):
|
||||
assert 0 <= x < self.width, 'Put out of bounds for x coordinate! Must be between 0 and %i' % self.width
|
||||
|
@ -249,17 +187,6 @@ class WorldChunk(Structure):
|
|||
if self.content[x][y][z] is not None:
|
||||
self.content[x][y][z].setColor(r, g, b)
|
||||
self.dirty = True
|
||||
self.dirty_color = True
|
||||
|
||||
def load(self):
|
||||
for x in range(self.width):
|
||||
for y in range(self.length):
|
||||
for z in range(self.height):
|
||||
if self.content[x][y][z] is not None: # and self.visible[x][y][z] > 0: TODO: check visibility...
|
||||
if self.programs[type(self.content[x][y][z])] not in self.objects.keys():
|
||||
self.objects[self.programs[type(self.content[x][y][z])]] = []
|
||||
self.objects[self.programs[type(self.content[x][y][z])]].append(self.content[x][y][z])
|
||||
|
||||
|
||||
class World(Renderable):
|
||||
def __init__(self, chunk_size_x: int, chunk_size_y: int, chunk_size_z: int,
|
||||
|
@ -273,14 +200,6 @@ class World(Renderable):
|
|||
self.chunk_n_z = chunk_n_z
|
||||
self.programs = programs
|
||||
|
||||
self.fault_nodes = []
|
||||
self.fault_lines = []
|
||||
self.plates = None
|
||||
self.directions = None
|
||||
self.num_plates = 0
|
||||
self.stone = None
|
||||
self.faults = None
|
||||
|
||||
self.chunks: [[[WorldChunk]]] = []
|
||||
for x in range(chunk_n_x):
|
||||
self.chunks.append([])
|
||||
|
@ -289,248 +208,6 @@ class World(Renderable):
|
|||
for z in range(chunk_n_z):
|
||||
self.chunks[x][y].append(None)
|
||||
|
||||
def generate(self, seed: int=None, sea_plate_height: int = 50, continental_plate_height: int = 200):
|
||||
if seed is None:
|
||||
seed = random.randrange(2**32)
|
||||
seed = 229805811
|
||||
print('Generation seed is %i' % seed)
|
||||
random.seed(seed)
|
||||
np.random.seed(seed)
|
||||
node_n = self.chunk_n_x + self.chunk_n_y
|
||||
total_x = self.chunk_n_x * self.chunk_size_x
|
||||
total_y = self.chunk_n_y * self.chunk_size_y
|
||||
nodes = []
|
||||
for _ in range(node_n):
|
||||
nodes.append([random.randint(0, total_x - 1), random.randint(0, total_y - 1)])
|
||||
|
||||
# connections = np.random.randint(2, 5, len(nodes)) #np.zeros(len(nodes)) + 3
|
||||
connections = (np.abs(np.random.normal(0, 5, len(nodes))) + 2).astype(np.int)
|
||||
|
||||
def calc_min_vector(start, end):
|
||||
dx = end[0] - start[0]
|
||||
wrapped_dx = dx % total_x
|
||||
|
||||
dy = end[1] - start[1]
|
||||
wrapped_dy = dy % total_y
|
||||
|
||||
vector = np.array([dx, dy])
|
||||
if wrapped_dx < abs(dx):
|
||||
vector[0] = wrapped_dx
|
||||
if wrapped_dy < abs(dy):
|
||||
vector[1] = wrapped_dy
|
||||
return vector
|
||||
|
||||
def is_intersecting_any(start, end, edges):
|
||||
vec1 = calc_min_vector(start, end)
|
||||
|
||||
for (start2_index, end2_index) in edges:
|
||||
start2 = nodes[start2_index]
|
||||
end2 = nodes[end2_index]
|
||||
|
||||
vec2 = calc_min_vector(start2, end2)
|
||||
|
||||
norm1 = vec1 / np.sqrt(np.sum(np.square(vec1)))
|
||||
norm2 = vec2 / np.sqrt(np.sum(np.square(vec2)))
|
||||
|
||||
# parrallel
|
||||
parallel_threshold = 0.0001
|
||||
if np.sqrt(np.sum(np.square(norm1 - norm2))) < parallel_threshold or np.sqrt(np.sum(np.square(norm1 + norm2))) < parallel_threshold:
|
||||
t = (start[0] - start2[0]) / vec2[0]
|
||||
t2 = (end[0] - start2[0]) / vec2[0]
|
||||
s = (start2[0] - start[0]) / vec1[0]
|
||||
s2 = (end2[0] - start[0]) / vec1[0]
|
||||
if (start2[1] + t * vec2[1]) - start[1] < parallel_threshold:
|
||||
if (0 <= t <= 1.0 and 0 <= t2 <= 1.0) or (0 <= s <= 1.0 and 0 <= s2 <= 1.0):
|
||||
return True
|
||||
else:
|
||||
if start != start2 and end != end2 and end != start2 and start != end2:
|
||||
t = (vec1[0] * start[1] + vec1[1] * start2[0] - vec1[1] * start[0] - start2[1] * vec1[0]) / (vec2[1] * vec1[0] - vec2[0] * vec1[1])
|
||||
if 0 <= t <= 1.0:
|
||||
intersection = np.array(start2) + vec2 * t
|
||||
s = (intersection[0] - start[0]) / vec1[0]
|
||||
if 0 <= s <= 1.0:
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
|
||||
|
||||
for index, node in enumerate(nodes):
|
||||
distances = []
|
||||
for other_index, other_node in enumerate(nodes):
|
||||
if node != other_node and (index, other_index) not in self.fault_lines and\
|
||||
(other_index, index) not in self.fault_lines:
|
||||
if (not is_intersecting_any(node, other_node, self.fault_lines)) and (not is_intersecting_any(other_node, node, self.fault_lines)):
|
||||
distances.append((other_index, np.sqrt(np.sum(np.square(calc_min_vector(node, other_node))))))
|
||||
|
||||
distances.sort(key=lambda element: element[1])
|
||||
while connections[index] > 0 and len(distances) > 0:
|
||||
self.fault_lines.append((index, distances[0][0]))
|
||||
connections[distances[0][0]] -= 1
|
||||
connections[index] -= 1
|
||||
distances.pop(0)
|
||||
|
||||
self.fault_nodes = nodes
|
||||
|
||||
plates = np.zeros((total_x, total_y))
|
||||
faults = np.zeros((total_x, total_y)) - 1
|
||||
plate_bordering_fault = {}
|
||||
# draw fault lines
|
||||
for fault_index, fault_line in enumerate(self.fault_lines):
|
||||
start = self.fault_nodes[fault_line[0]]
|
||||
end = self.fault_nodes[fault_line[1]]
|
||||
vector = calc_min_vector(start, end)
|
||||
vector = vector / np.sqrt(np.sum(np.square(vector)))
|
||||
|
||||
point = np.array(start, dtype=np.float)
|
||||
plate_bordering_fault[fault_index] = []
|
||||
|
||||
while np.sqrt(np.sum(np.square(point - np.array(end)))) > 0.5:
|
||||
plates[int(point[0]), int(point[1])] = -1
|
||||
if faults[int(point[0]), int(point[1])] == -1:
|
||||
faults[int(point[0]), int(point[1])] = fault_index
|
||||
elif faults[int(point[0]), int(point[1])] != fault_index:
|
||||
faults[int(point[0]), int(point[1])] = -2
|
||||
point += 0.5 * vector
|
||||
point[0] %= total_x
|
||||
point[1] %= total_y
|
||||
self.faults = faults
|
||||
|
||||
plate = 1
|
||||
while np.any(plates == 0):
|
||||
start = np.where(plates == 0)
|
||||
start = (start[0][0], start[1][0])
|
||||
plates[start] = plate
|
||||
work_list = [start]
|
||||
|
||||
while len(work_list) > 0:
|
||||
work = work_list.pop()
|
||||
|
||||
up = (work[0], (work[1] + 1) % total_y)
|
||||
down = (work[0], (work[1] - 1) % total_y)
|
||||
left = ((work[0] - 1) % total_x, work[1])
|
||||
right = ((work[0] + 1) % total_x, work[1])
|
||||
|
||||
if plates[up] == -1 and plates[down] == -1 and plates[left] == -1 and plates[right] == -1:
|
||||
plates[work] = -1
|
||||
continue
|
||||
|
||||
if plates[up] <= 0:
|
||||
if plates[up] == 0:
|
||||
work_list.append(up)
|
||||
plates[up] = plate
|
||||
if plates[down] <= 0:
|
||||
if plates[down] == 0:
|
||||
work_list.append(down)
|
||||
plates[down] = plate
|
||||
if plates[left] <= 0:
|
||||
if plates[left] == 0:
|
||||
work_list.append(left)
|
||||
plates[left] = plate
|
||||
if plates[right] <= 0:
|
||||
if plates[right] == 0:
|
||||
work_list.append(right)
|
||||
plates[right] = plate
|
||||
|
||||
if faults[up] > -1:
|
||||
if plate not in plate_bordering_fault[faults[up]]:
|
||||
plate_bordering_fault[faults[up]].append(plate)
|
||||
if faults[down] > -1:
|
||||
if plate not in plate_bordering_fault[faults[down]]:
|
||||
plate_bordering_fault[faults[down]].append(plate)
|
||||
if faults[left] > -1:
|
||||
if plate not in plate_bordering_fault[faults[left]]:
|
||||
plate_bordering_fault[faults[left]].append(plate)
|
||||
if faults[right] > -1:
|
||||
if plate not in plate_bordering_fault[faults[right]]:
|
||||
plate_bordering_fault[faults[right]].append(plate)
|
||||
plate += 1
|
||||
|
||||
plate_num = plate
|
||||
for plate in range(1, plate_num):
|
||||
if np.sum(plates == plate) < 20:
|
||||
plates[plates == plate] = -1
|
||||
for key, item in plate_bordering_fault.items():
|
||||
if plate in item:
|
||||
item.remove(plate)
|
||||
|
||||
directions = np.zeros((total_x, total_y, 3))
|
||||
|
||||
coords = np.zeros((total_x, total_y, 2))
|
||||
for x in range(total_x):
|
||||
for y in range(total_y):
|
||||
coords[x, y, 0] = x
|
||||
coords[x, y, 1] = y
|
||||
|
||||
for fault_index, fault_line in enumerate(self.fault_lines):
|
||||
start = self.fault_nodes[fault_line[0]]
|
||||
end = self.fault_nodes[fault_line[1]]
|
||||
vector = calc_min_vector(start, end)
|
||||
vector = vector / np.sqrt(np.sum(np.square(vector)))
|
||||
|
||||
perpendicular = np.array([vector[1], -vector[0]])
|
||||
|
||||
if len(plate_bordering_fault[fault_index]) == 2:
|
||||
for plate in plate_bordering_fault[fault_index]:
|
||||
vecs = coords - np.array(start)
|
||||
lengths = np.sqrt(np.sum(np.square(vecs), axis=2, keepdims=True))
|
||||
norm_vecs = vecs / lengths
|
||||
scalars = np.sum(norm_vecs * perpendicular, axis=2, keepdims=True)
|
||||
scalars[lengths == 0] = 0
|
||||
|
||||
end_vecs = coords - np.array(end)
|
||||
end_lengths = np.sqrt(np.sum(np.square(end_vecs), axis=2, keepdims=True))
|
||||
end_min_length = np.min(end_lengths[np.logical_and(plates == plate, end_lengths[:, :, 0] > 0)])
|
||||
end_min_length_scalar = scalars[np.logical_and(plates == plate, end_lengths[:, :, 0] == end_min_length)][0, 0]
|
||||
|
||||
min_length = np.min(lengths[np.logical_and(plates == plate, lengths[:, :, 0] > 0)])
|
||||
min_length_scalar = scalars[np.logical_and(plates == plate, lengths[:, :, 0] == min_length)][0, 0]
|
||||
|
||||
mean_scalar = np.mean(scalars[plates == plate])
|
||||
|
||||
if (min_length_scalar / abs(min_length_scalar)) == (end_min_length_scalar / abs(end_min_length_scalar)):
|
||||
scalar = min_length_scalar
|
||||
else:
|
||||
if (min_length_scalar / abs(min_length_scalar)) == (mean_scalar / abs(mean_scalar)):
|
||||
scalar = min_length_scalar
|
||||
else:
|
||||
scalar = end_min_length_scalar
|
||||
|
||||
directions[plates == plate, :2] += perpendicular * (scalar / abs(scalar))
|
||||
pass
|
||||
|
||||
for x in range(total_x):
|
||||
for y in range(total_y):
|
||||
if plates[x, y] == -1:
|
||||
plate = np.max(plates[x - 1: x + 1, y - 1: y + 1])
|
||||
plates[x, y] = plate
|
||||
|
||||
self.plates = plates
|
||||
self.directions = directions
|
||||
self.num_plates = plate_num
|
||||
|
||||
# max height will be three times the continental height
|
||||
# sea level will be at one and a half time continental height
|
||||
# with the continental plates top end ending there
|
||||
# sea plates will be flush at the bottom end
|
||||
max_height = 3 * continental_plate_height
|
||||
sea_level = int(1.5 * continental_plate_height)
|
||||
lower_level = sea_level - continental_plate_height
|
||||
upper_sea_plate_level = lower_level + sea_plate_height
|
||||
|
||||
# stone kinds: 0: lava/air, 1: sea_plate, 2: magmatic_continental, 3: metamorph, 4: sedimental_rock, 5: sediment
|
||||
self.stone = np.zeros((total_x, total_y, max_height), np.int)
|
||||
plate_to_type = {}
|
||||
for plate in range(1, plate_num):
|
||||
if random.randint(1, 2) == 1:
|
||||
self.stone[plates == plate, lower_level:upper_sea_plate_level] = SEA_PLATE_STONE
|
||||
plate_to_type[plate] = SEA_PLATE
|
||||
else:
|
||||
self.stone[plates == plate, lower_level:sea_level] = MAGMATIC_STONE
|
||||
plate_to_type[plate] = CONTINENTAL_PLATE
|
||||
|
||||
pass
|
||||
|
||||
def set_color(self, x: int, y: int, z: int, r: float, g: float, b: float):
|
||||
x = x % (self.chunk_size_x * self.chunk_n_x)
|
||||
y = y % (self.chunk_size_y * self.chunk_n_y)
|
||||
|
@ -544,8 +221,6 @@ class World(Renderable):
|
|||
y % self.chunk_size_y,
|
||||
z % self.chunk_size_z,
|
||||
r, g, b)
|
||||
else:
|
||||
print('Changing color of nonexistant element!')
|
||||
|
||||
def put_object(self, x: int, y: int, z: int, new_object: Object):
|
||||
x = x % (self.chunk_size_x * self.chunk_n_x)
|
||||
|
@ -558,9 +233,6 @@ class World(Renderable):
|
|||
|
||||
if self.chunks[chunk_x][chunk_y][chunk_z] is None:
|
||||
self.chunks[chunk_x][chunk_y][chunk_z] = WorldChunk(self.chunk_size_x, self.chunk_size_y, self.chunk_size_z, self.programs)
|
||||
self.chunks[chunk_x][chunk_y][chunk_z].x_offset = chunk_x * self.chunk_size_x
|
||||
self.chunks[chunk_x][chunk_y][chunk_z].y_offset = chunk_y * self.chunk_size_z
|
||||
self.chunks[chunk_x][chunk_y][chunk_z].z_offset = chunk_z * self.chunk_size_y
|
||||
|
||||
carry_overs = self.chunks[chunk_x][chunk_y][chunk_z].put_object(x % self.chunk_size_x,
|
||||
y % self.chunk_size_y,
|
||||
|
@ -628,38 +300,17 @@ class World(Renderable):
|
|||
y % self.chunk_size_y,
|
||||
z % self.chunk_size_z)
|
||||
|
||||
def render(self, proj_matrix, geometry_rot_matrix, alternate_programs=None,
|
||||
preselected_program=None, projection_pos=None, rot_pos=None):
|
||||
if preselected_program is not None:
|
||||
for x in range(self.chunk_n_x):
|
||||
for y in range(self.chunk_n_y):
|
||||
for z in range(self.chunk_n_z):
|
||||
if self.chunks[x][y][z] is not None:
|
||||
self.chunks[x][y][z].render(proj_matrix,
|
||||
geometry_rot_matrix, alternate_programs,
|
||||
preselected_program, projection_pos, rot_pos)
|
||||
else:
|
||||
for _, program_id in self.programs.items():
|
||||
if alternate_programs == None:
|
||||
used_program_id = program_id
|
||||
else:
|
||||
assert program_id in alternate_programs.keys()
|
||||
used_program_id = alternate_programs[program_id]
|
||||
glUseProgram(used_program_id)
|
||||
self.check_error("Renderingprogram is not initialized!")
|
||||
projection = glGetUniformLocation(used_program_id, 'projModelViewMatrix')
|
||||
rot = glGetUniformLocation(used_program_id, 'rotMatrix')
|
||||
glUniformMatrix3fv(rot, 1, GL_FALSE, np.array(geometry_rot_matrix))
|
||||
glUniformMatrix4fv(projection, 1, GL_FALSE, np.array(proj_matrix))
|
||||
for x in range(self.chunk_n_x):
|
||||
for y in range(self.chunk_n_y):
|
||||
for z in range(self.chunk_n_z):
|
||||
if self.chunks[x][y][z] is not None:
|
||||
self.chunks[x][y][z].render(proj_matrix,
|
||||
geometry_rot_matrix, alternate_programs,
|
||||
used_program_id, projection, rot)
|
||||
def render(self, proj_matrix, geometry_rot_matrix, alternate_programs=None):
|
||||
for x in range(self.chunk_n_x):
|
||||
for y in range(self.chunk_n_y):
|
||||
for z in range(self.chunk_n_z):
|
||||
if self.chunks[x][y][z] is not None:
|
||||
self.chunks[x][y][z].render(translate(x * self.chunk_size_x,
|
||||
y * self.chunk_size_y,
|
||||
z * self.chunk_size_z) * proj_matrix,
|
||||
geometry_rot_matrix, alternate_programs)
|
||||
|
||||
def add_light(self, x: float, y: float, z: float, l: Light)-> Light:
|
||||
def add_light(self, x: float, y: float, z: float, l: Light):
|
||||
x = x % (self.chunk_size_x * self.chunk_n_x)
|
||||
y = y % (self.chunk_size_y * self.chunk_n_y)
|
||||
z = z % (self.chunk_size_z * self.chunk_n_z)
|
||||
|
@ -670,15 +321,10 @@ class World(Renderable):
|
|||
|
||||
if self.chunks[chunk_x][chunk_y][chunk_z] is None:
|
||||
self.chunks[chunk_x][chunk_y][chunk_z] = WorldChunk(self.chunk_size_x, self.chunk_size_y, self.chunk_size_z, self.programs)
|
||||
self.chunks[chunk_x][chunk_y][chunk_z].x_offset = chunk_x * self.chunk_size_x
|
||||
self.chunks[chunk_x][chunk_y][chunk_z].y_offset = chunk_y * self.chunk_size_z
|
||||
self.chunks[chunk_x][chunk_y][chunk_z].z_offset = chunk_z * self.chunk_size_y
|
||||
|
||||
self.chunks[chunk_x][chunk_y][chunk_z].lights.append(l)
|
||||
l.pos = [x, y, z]
|
||||
|
||||
return l
|
||||
|
||||
def remove_light(self, l: Light):
|
||||
chunk_x = int(l.pos[0] / self.chunk_size_x)
|
||||
chunk_y = int(l.pos[1] / self.chunk_size_y)
|
||||
|
|
|
@ -2,9 +2,8 @@ from Objects.World import World
|
|||
|
||||
|
||||
class WorldProvider:
|
||||
def __init__(self, programs, world_class=World):
|
||||
self.world: World = world_class(10, 10, 10, 10, 10, 10, programs)
|
||||
self.world.generate()
|
||||
def __init__(self, programs):
|
||||
self.world: World = World(10, 10, 10, 10, 10, 10, programs)
|
||||
|
||||
def update(self):
|
||||
pass
|
||||
|
|
|
@ -1,59 +0,0 @@
|
|||
import time
|
||||
|
||||
from Client.Client import Client, MAX_DISTANCE, glutPostRedisplay
|
||||
from MatrixStuff.Transformations import perspectiveMatrix
|
||||
from labirinth_ai.LabyrinthProvider import LabyrinthProvider
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
class LabyrinthClient(Client):
|
||||
def __init__(self, test=False, pos=[0, 0, 0], world_class=LabyrinthProvider):
|
||||
self.render = True
|
||||
self.round_timer = time.time()
|
||||
super(LabyrinthClient, self).__init__(test, pos, world_class)
|
||||
|
||||
def draw_world(self):
|
||||
start_time = time.time()
|
||||
for x in range(self.world_provider.world.chunk_size_x * self.world_provider.world.chunk_n_x):
|
||||
for y in range(self.world_provider.world.chunk_size_y * self.world_provider.world.chunk_n_y):
|
||||
if self.world_provider.world.board[x, y] in [1, 2]:
|
||||
r, g, b = 57, 92, 152
|
||||
if 1.5 >= self.world_provider.world.hunter_grass[x, y] > 0.5:
|
||||
r, g, b = 112, 198, 169
|
||||
if 3 >= self.world_provider.world.hunter_grass[x, y] > 1.5:
|
||||
r, g, b = 25, 149, 156
|
||||
self.world_provider.world.set_color(x, y, 0, r / 255.0, g / 255.0, b / 255.0)
|
||||
if self.world_provider.world.board[x, y] == 3:
|
||||
self.world_provider.world.set_color(x, y, 0, 139 / 255.0, 72 / 255.0, 82 / 255.0)
|
||||
|
||||
for sub in self.world_provider.world.subjects:
|
||||
if not sub.random:
|
||||
# pyxel.rectb(sub.x * 4 + 1, sub.y * 4 + 1, 2, 2, sub.col)
|
||||
self.world_provider.world.set_color(sub.x, sub.y, 0, sub.r / 255.0, sub.g / 255.0, sub.b / 255.0)
|
||||
else:
|
||||
self.world_provider.world.set_color(sub.x, sub.y, 0, 212 / 255.0, 150 / 255.0, 222 / 255.0)
|
||||
|
||||
self.projMatrix = perspectiveMatrix(45.0, 400 / 400, 0.01, MAX_DISTANCE)
|
||||
# print('redraw', time.time() - start_time)
|
||||
|
||||
def display(self):
|
||||
if self.render:
|
||||
super(LabyrinthClient, self).display()
|
||||
self.draw_world()
|
||||
else:
|
||||
glutPostRedisplay()
|
||||
self.world_provider.world.update()
|
||||
# round_end = time.time()
|
||||
# print('round time', round_end - self.round_timer)
|
||||
# self.round_timer = round_end
|
||||
|
||||
def keyboardHandler(self, key: int, x: int, y: int):
|
||||
super().keyboardHandler(key, x, y)
|
||||
|
||||
if key == b' ':
|
||||
self.render = not self.render
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
client = LabyrinthClient(pos=[-50, -50, -200])
|
|
@ -1,6 +0,0 @@
|
|||
from WorldProvider.WorldProvider import WorldProvider
|
||||
from labirinth_ai.LabyrinthWorld import LabyrinthWorld
|
||||
|
||||
class LabyrinthProvider(WorldProvider):
|
||||
def __init__(self, programs):
|
||||
super(LabyrinthProvider, self).__init__(programs, LabyrinthWorld)
|
|
@ -1,229 +0,0 @@
|
|||
import time
|
||||
from typing import Tuple
|
||||
|
||||
from Objects.Cube.Cube import Cube
|
||||
from Objects.World import World
|
||||
import numpy as np
|
||||
import random
|
||||
|
||||
class LabyrinthWorld(World):
|
||||
randomBuffer = 0
|
||||
batchsize = 1000
|
||||
randomBuffer = max(4 * batchsize, randomBuffer)
|
||||
|
||||
def __init__(self, chunk_size_x: int, chunk_size_y: int, chunk_size_z: int,
|
||||
chunk_n_x: int, chunk_n_y: int, chunk_n_z: int, programs: dict):
|
||||
self.board_shape = (chunk_size_x * chunk_n_x, chunk_size_y * chunk_n_y)
|
||||
self.board = np.zeros(self.board_shape)
|
||||
super(LabyrinthWorld, self).__init__(chunk_size_x, chunk_size_y, chunk_size_z,
|
||||
chunk_n_x, chunk_n_y, chunk_n_z, programs)
|
||||
self.max_room_dim = 20
|
||||
|
||||
self.min_room_dim = 6
|
||||
|
||||
self.max_room_num = 32
|
||||
self.max_corridors = 4 * self.max_room_num
|
||||
|
||||
self.max_crates = self.max_room_num
|
||||
|
||||
self.model = None
|
||||
self.lastUpdate = time.time()
|
||||
self.nextTrain = self.randomBuffer
|
||||
self.round = 1
|
||||
# self.evolve_timer = 10
|
||||
self.evolve_timer = 1500
|
||||
|
||||
self.trailMix = np.zeros(self.board_shape)
|
||||
self.grass = np.zeros(self.board_shape)
|
||||
self.hunter_grass = np.zeros(self.board_shape)
|
||||
self.subjectDict = {}
|
||||
|
||||
self._hunters = None
|
||||
self._herbivores = None
|
||||
|
||||
@property
|
||||
def hunters(self):
|
||||
if self._hunters is None:
|
||||
return []
|
||||
return self._hunters.subjects
|
||||
|
||||
@property
|
||||
def herbivores(self):
|
||||
if self._herbivores is None:
|
||||
return []
|
||||
return self._herbivores.subjects
|
||||
|
||||
@property
|
||||
def subjects(self):
|
||||
return self.hunters + self.herbivores
|
||||
|
||||
def generate(self, seed: int = None, sea_plate_height: int = 50, continental_plate_height: int = 200):
|
||||
board = np.zeros(self.board_shape)
|
||||
random.seed(seed)
|
||||
np.random.seed(seed)
|
||||
|
||||
# find random starting point
|
||||
px = random.randint(self.max_room_dim, (self.board_shape[0] - 1) - self.max_room_dim)
|
||||
py = random.randint(self.max_room_dim, (self.board_shape[1] - 1) - self.max_room_dim)
|
||||
|
||||
# 0, 0 is top left
|
||||
right = (1, 0)
|
||||
left = (-1, 0)
|
||||
up = (0, -1)
|
||||
down = (0, 1)
|
||||
|
||||
# place rooms
|
||||
room_num = 0
|
||||
corridor_num = 0
|
||||
while room_num < self.max_room_num and corridor_num < self.max_corridors:
|
||||
# try to place Room
|
||||
w = random.randint(self.min_room_dim, self.max_room_dim)
|
||||
h = random.randint(self.min_room_dim, self.max_room_dim)
|
||||
can_place_room = np.sum(
|
||||
board[px - int(w / 2.0):px + int(w / 2.0), py - int(h / 2.0):py + int(h / 2.0)] == 1) == 0 and px - int(
|
||||
w / 2.0) >= 0 and px + int(w / 2.0) < self.board_shape[0] and \
|
||||
py - int(h / 2.0) >= 0 and py + int(h / 2.0) < self.board_shape[1]
|
||||
|
||||
if can_place_room:
|
||||
# place Room
|
||||
board[px - int(w / 2.0):px + int(w / 2.0), py - int(h / 2.0):py + int(h / 2.0)] = 1
|
||||
room_num += 1
|
||||
else:
|
||||
# move && place Corridor
|
||||
directions = []
|
||||
while len(directions) == 0:
|
||||
movable = []
|
||||
corridor_length = random.randint(self.min_room_dim, self.max_room_dim)
|
||||
if px - corridor_length >= 0:
|
||||
movable.append(left)
|
||||
if board[px - 1, py] != 2:
|
||||
directions.append(left)
|
||||
|
||||
if px + corridor_length < self.board_shape[0]:
|
||||
movable.append(right)
|
||||
if board[px + 1, py] != 2:
|
||||
directions.append(right)
|
||||
|
||||
if py - corridor_length >= 0:
|
||||
movable.append(up)
|
||||
if board[px, py - 1] != 2:
|
||||
directions.append(up)
|
||||
|
||||
if py + corridor_length < self.board_shape[1]:
|
||||
movable.append(down)
|
||||
if board[px, py + 1] != 2:
|
||||
directions.append(down)
|
||||
|
||||
if len(directions) != 0:
|
||||
if len(directions) > 1:
|
||||
d = directions[random.randint(0, len(directions) - 1)]
|
||||
else:
|
||||
d = directions[0]
|
||||
changed = False
|
||||
for _ in range(corridor_length):
|
||||
if board[px, py] != 1 and board[px, py] != 2:
|
||||
board[px, py] = 2
|
||||
if (-d[0], -d[1]) not in movable or board[px - d[0], py - d[1]] != 2:
|
||||
changed = True
|
||||
px += d[0]
|
||||
py += d[1]
|
||||
if changed:
|
||||
corridor_num += 1
|
||||
else:
|
||||
if len(movable) != 0:
|
||||
if len(movable) > 1:
|
||||
d = movable[random.randint(0, len(movable) - 1)]
|
||||
else:
|
||||
d = movable[0]
|
||||
for _ in range(corridor_length):
|
||||
px += d[0]
|
||||
py += d[1]
|
||||
|
||||
crates = 0
|
||||
while crates < self.max_crates:
|
||||
px = random.randint(0, (self.board_shape[0] - 1))
|
||||
py = random.randint(0, (self.board_shape[1] - 1))
|
||||
|
||||
if board[px, py] == 1:
|
||||
board[px, py] = 3
|
||||
crates += 1
|
||||
|
||||
board[board == 2] = 1
|
||||
|
||||
print((room_num, self.max_room_num))
|
||||
print((corridor_num, self.max_corridors))
|
||||
self.board = board
|
||||
|
||||
# setting up the board
|
||||
for x_pos in range(0, self.board_shape[0]):
|
||||
for y_pos in range(0, self.board_shape[1]):
|
||||
for z_pos in range(0, 1):
|
||||
self.put_object(x_pos, y_pos, z_pos, Cube().setColor(1, 1, 1))
|
||||
|
||||
# adding subjects
|
||||
from labirinth_ai.Subject import Hunter, Herbivore
|
||||
from labirinth_ai.Population import Population
|
||||
self._hunters = Population(Hunter, self, 10, do_evolve=False)
|
||||
|
||||
self._herbivores = Population(Herbivore, self, 40, do_evolve=False)
|
||||
|
||||
self.subjectDict = self.build_subject_dict()
|
||||
|
||||
def generate_free_coordinates(self) -> Tuple[int, int]:
|
||||
while True:
|
||||
px = random.randint(self.max_room_dim, self.board_shape[0] - self.max_room_dim)
|
||||
py = random.randint(self.max_room_dim, self.board_shape[1] - self.max_room_dim)
|
||||
if self.board[px, py] == 1:
|
||||
return px, py
|
||||
|
||||
def build_subject_dict(self):
|
||||
subject_dict = {}
|
||||
for x in range(self.board_shape[0]):
|
||||
for y in range(self.board_shape[1]):
|
||||
subject_dict[(x, y)] = []
|
||||
|
||||
for sub in self.subjects:
|
||||
subject_dict[(sub.x, sub.y)].append(sub)
|
||||
return subject_dict
|
||||
|
||||
def update(self):
|
||||
|
||||
if self.round % self.evolve_timer == 0:
|
||||
print('Evolve population')
|
||||
self.round = 0
|
||||
self._hunters.evolve()
|
||||
self._herbivores.evolve()
|
||||
self.subjectDict = self.build_subject_dict()
|
||||
self.round += 1
|
||||
|
||||
# start = time.time()
|
||||
for sub in self.subjects:
|
||||
sub.calculateAction(self)
|
||||
|
||||
for sub in self.subjects:
|
||||
if sub.alive:
|
||||
sub.update(self)
|
||||
sub.tick += 1
|
||||
|
||||
kill_table = {}
|
||||
live_table = {}
|
||||
for sub in self.subjects:
|
||||
if sub.name not in kill_table.keys():
|
||||
kill_table[sub.name] = 0
|
||||
live_table[sub.name] = 0
|
||||
kill_table[sub.name] += sub.kills
|
||||
live_table[sub.name] += sub.lives
|
||||
if not sub.alive:
|
||||
px = random.randint(self.max_room_dim, (self.board_shape[0] - 1) - self.max_room_dim)
|
||||
py = random.randint(self.max_room_dim, (self.board_shape[1] - 1) - self.max_room_dim)
|
||||
while self.board[px, py] == 0:
|
||||
px = random.randint(self.max_room_dim, (self.board_shape[0] - 1) - self.max_room_dim)
|
||||
py = random.randint(self.max_room_dim, (self.board_shape[1] - 1) - self.max_room_dim)
|
||||
sub.respawnUpdate(px, py, self)
|
||||
|
||||
self.trailMix *= 0.99
|
||||
|
||||
self.grass = np.minimum(self.grass + 0.01 * (self.board != 0), 3)
|
||||
self.hunter_grass = np.minimum(self.hunter_grass + 0.01 * (self.board != 0), 3)
|
||||
|
||||
self.trailMix *= (self.trailMix > 0.01)
|
|
@ -1,145 +0,0 @@
|
|||
import torch
|
||||
from torch import nn
|
||||
import numpy as np
|
||||
from tqdm import tqdm
|
||||
from torch.utils.data import Dataset, DataLoader
|
||||
|
||||
import os
|
||||
os.environ["TORCH_AUTOGRAD_SHUTDOWN_WAIT_LIMIT"] = "0"
|
||||
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
print(f"Using {device} device")
|
||||
|
||||
|
||||
# Define model
|
||||
class BaseModel(nn.Module):
|
||||
evolutionary = False
|
||||
|
||||
def __init__(self, view_dimension, action_num, channels):
|
||||
super(BaseModel, self).__init__()
|
||||
self.flatten = nn.Flatten()
|
||||
self.actions = []
|
||||
self.action_num = action_num
|
||||
self.viewD = view_dimension
|
||||
self.channels = channels
|
||||
for action in range(action_num):
|
||||
action_sequence = nn.Sequential(
|
||||
nn.Linear(channels * (2 * self.viewD + 1) * (2 * self.viewD + 1) + 2,
|
||||
(2 * self.viewD + 1) * (2 * self.viewD + 1)),
|
||||
nn.ELU(),
|
||||
nn.Linear((2 * self.viewD + 1) * (2 * self.viewD + 1), (self.viewD + 1) * (self.viewD + 1)),
|
||||
nn.ELU(),
|
||||
nn.Linear((self.viewD + 1) * (self.viewD + 1), 2)
|
||||
)
|
||||
self.add_module('action_' + str(action), action_sequence)
|
||||
self.actions.append(action_sequence)
|
||||
|
||||
def forward(self, x):
|
||||
x_flat = self.flatten(x)
|
||||
actions = []
|
||||
for action in range(self.action_num):
|
||||
actions.append(self.actions[action](x_flat))
|
||||
return torch.stack(actions, dim=1)
|
||||
|
||||
|
||||
class BaseDataSet(Dataset):
|
||||
def __init__(self, states, targets):
|
||||
assert len(states) == len(targets), "Needs to have as many states as targets!"
|
||||
self.states = torch.tensor(np.array(states), dtype=torch.float32)
|
||||
self.targets = torch.tensor(np.array(targets), dtype=torch.float32)
|
||||
|
||||
def __len__(self):
|
||||
return len(self.states)
|
||||
|
||||
def __getitem__(self, idx):
|
||||
return self.states[idx], self.targets[idx]
|
||||
|
||||
|
||||
def create_optimizer(model):
|
||||
return torch.optim.RMSprop(model.parameters(), lr=1e-3)
|
||||
|
||||
|
||||
def create_loss_function(action):
|
||||
lambda_factor = 0.0
|
||||
split_factor = 1.0
|
||||
def custom_loss(prediction, target):
|
||||
return torch.mean(split_factor * torch.square(
|
||||
# discounted best estimate the old weights made for t+1
|
||||
lambda_factor * target[:, 0, 0] +
|
||||
# actual reward for t
|
||||
target[:, 1, 0] -
|
||||
# estimate for current weights
|
||||
(prediction[:, action, 0] + prediction[:, action, 1])) +
|
||||
# trying to learn present reward separate from future reward
|
||||
(1.0 - split_factor) * torch.square(target[:, 1, 0] - prediction[:, action, 0]), dim=0)
|
||||
|
||||
return custom_loss
|
||||
|
||||
|
||||
def from_numpy(x):
|
||||
return torch.tensor(np.array(x), dtype=torch.float32)
|
||||
|
||||
|
||||
def train(states, targets, model, optimizer):
|
||||
for action in range(model.action_num):
|
||||
data_set = BaseDataSet(states[action], targets[action])
|
||||
dataloader = DataLoader(data_set, batch_size=256, shuffle=True)
|
||||
loss_fn = create_loss_function(action)
|
||||
|
||||
size = len(dataloader)
|
||||
model.train()
|
||||
|
||||
epochs = 1
|
||||
with tqdm(range(epochs)) as progress_bar:
|
||||
for _ in enumerate(progress_bar):
|
||||
losses = []
|
||||
for batch, (X, y) in enumerate(dataloader):
|
||||
X, y = X.to(device), y.to(device)
|
||||
|
||||
# Compute prediction error
|
||||
pred = model(X)
|
||||
loss = loss_fn(pred, y)
|
||||
|
||||
# Backpropagation
|
||||
optimizer.zero_grad()
|
||||
loss.backward(retain_graph=True)
|
||||
optimizer.step()
|
||||
|
||||
losses.append(loss.item())
|
||||
progress_bar.set_postfix(loss=np.average(losses))
|
||||
progress_bar.update()
|
||||
model.eval()
|
||||
|
||||
del data_set
|
||||
del dataloader
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
sample = np.random.random((1, 486))
|
||||
|
||||
model = BaseModel(5, 4, 4).to(device)
|
||||
print(model)
|
||||
|
||||
test = model(torch.tensor(sample, dtype=torch.float32))
|
||||
# test = test.cpu().detach().numpy()
|
||||
print(test)
|
||||
|
||||
state = np.random.random((486,))
|
||||
target = np.random.random((4, 2))
|
||||
states = [
|
||||
[state],
|
||||
[state],
|
||||
[state],
|
||||
[state],
|
||||
]
|
||||
targets = [
|
||||
[target],
|
||||
[target],
|
||||
[target],
|
||||
[target],
|
||||
]
|
||||
|
||||
optimizer = torch.optim.RMSprop(model.parameters(), lr=1e-3)
|
||||
|
||||
train(states, targets, model, optimizer)
|
||||
|
|
@ -1,267 +0,0 @@
|
|||
import torch
|
||||
from torch import nn
|
||||
import numpy as np
|
||||
from torch.utils.data import Dataset, DataLoader
|
||||
from labirinth_ai.Models.BaseModel import device, BaseDataSet, create_loss_function, create_optimizer
|
||||
from labirinth_ai.Models.Genotype import Genotype
|
||||
|
||||
|
||||
class EvolutionModel(nn.Module):
|
||||
evolutionary = True
|
||||
|
||||
def __init__(self, view_dimension, action_num, channels, genes: Genotype = None, genotype_class=None):
|
||||
if genotype_class is None:
|
||||
genotype_class = Genotype
|
||||
super(EvolutionModel, self).__init__()
|
||||
self.flatten = nn.Flatten()
|
||||
|
||||
self.action_num = action_num
|
||||
self.viewD = view_dimension
|
||||
self.channels = channels
|
||||
|
||||
if genes is None:
|
||||
self.num_input_nodes = channels * (2 * self.viewD + 1) * (2 * self.viewD + 1) + 2
|
||||
self.genes = genotype_class(action_num, self.num_input_nodes)
|
||||
else:
|
||||
self.num_input_nodes = len(list(filter(lambda element: element[1].node_type == 'sensor', genes.nodes.items())))
|
||||
assert self.num_input_nodes > 0, 'Network needs to have sensor nodes!'
|
||||
is_input_over = False
|
||||
is_output_over = False
|
||||
for key, node in genes.nodes.items():
|
||||
if node.node_type == 'sensor':
|
||||
if is_input_over:
|
||||
raise ValueError('Node genes need to follow the order sensor, output, hidden!')
|
||||
|
||||
if node.node_type == 'output':
|
||||
is_input_over = True
|
||||
if is_output_over:
|
||||
raise ValueError('Node genes need to follow the order sensor, output, hidden!')
|
||||
|
||||
if node.node_type == 'hidden':
|
||||
is_output_over = True
|
||||
|
||||
self.genes = genes
|
||||
|
||||
self.incoming_connections = {}
|
||||
for connection in self.genes.connections:
|
||||
if not connection.enabled:
|
||||
continue
|
||||
if connection.end not in self.incoming_connections.keys():
|
||||
self.incoming_connections[connection.end] = []
|
||||
self.incoming_connections[connection.end].append(connection)
|
||||
|
||||
self.layers = {}
|
||||
self.layer_non_recurrent_inputs = {}
|
||||
self.layer_recurrent_inputs = {}
|
||||
self.layer_results = {}
|
||||
self.layer_num = 1
|
||||
self.indices = {}
|
||||
|
||||
self.has_recurrent = False
|
||||
self.non_recurrent_indices = {}
|
||||
self.recurrent_indices = {}
|
||||
|
||||
for key, value in self.incoming_connections.items():
|
||||
value.sort(key=lambda element: element.start)
|
||||
|
||||
# lin = nn.Linear(len(value), 1, bias=self.genes.nodes[key].bias is not None)
|
||||
# for index, connection in enumerate(value):
|
||||
# lin.weight[0, index] = value[index].weight
|
||||
# if self.genes.nodes[key].bias is not None:
|
||||
# lin.bias[0] = self.genes.nodes[key].bias
|
||||
#
|
||||
# non_lin = nn.ELU()
|
||||
# sequence = nn.Sequential(
|
||||
# lin,
|
||||
# non_lin
|
||||
# )
|
||||
# self.add_module('layer_' + str(key), sequence)
|
||||
# self.layers[key] = sequence
|
||||
self.indices[key] = list(map(lambda element: element.start, value))
|
||||
|
||||
self.non_recurrent_indices[key] = list(filter(lambda element: not element.recurrent, value))
|
||||
self.recurrent_indices[key] = list(filter(lambda element: element.recurrent, value))
|
||||
if not self.has_recurrent and len(self.non_recurrent_indices[key]) != len(self.indices[key]):
|
||||
self.has_recurrent = True
|
||||
self.non_recurrent_indices[key] = list(map(lambda element: element.start, self.non_recurrent_indices[key]))
|
||||
self.recurrent_indices[key] = list(map(lambda element: element.start, self.recurrent_indices[key]))
|
||||
rank_of_node = {}
|
||||
for i in range(self.num_input_nodes):
|
||||
rank_of_node[i] = 0
|
||||
|
||||
layers_to_add = list(self.non_recurrent_indices.items())
|
||||
while len(layers_to_add) > 0:
|
||||
for index, (key, incoming_nodes) in enumerate(list(layers_to_add)):
|
||||
max_rank = -1
|
||||
all_ranks_found = True
|
||||
|
||||
for incoming_node in incoming_nodes:
|
||||
if incoming_node in rank_of_node.keys():
|
||||
max_rank = max(max_rank, rank_of_node[incoming_node])
|
||||
else:
|
||||
all_ranks_found = False
|
||||
|
||||
if all_ranks_found:
|
||||
rank_of_node[key] = max_rank + 1
|
||||
|
||||
layers_to_add = list(filter(lambda element: element[0] not in rank_of_node.keys(), layers_to_add))
|
||||
|
||||
with torch.no_grad():
|
||||
self.layer_num = max_rank = max(map(lambda element: element[1], rank_of_node.items()))
|
||||
#todo: handle solely recurrent nodes
|
||||
for rank in range(1, max_rank + 1):
|
||||
# get nodes
|
||||
nodes = list(map(lambda element: element[0], filter(lambda item: item[1] == rank, rank_of_node.items())))
|
||||
non_recurrent_inputs = list(set.union(*map(lambda node: set(self.non_recurrent_indices[node]), nodes)))
|
||||
non_recurrent_inputs.sort()
|
||||
|
||||
recurrent_inputs = list(set.union(*map(lambda node: set(self.recurrent_indices[node]), nodes)))
|
||||
recurrent_inputs.sort()
|
||||
|
||||
lin = nn.Linear(len(non_recurrent_inputs) + len(recurrent_inputs), len(nodes), bias=True)
|
||||
|
||||
# todo: load weights
|
||||
|
||||
# for index, connection in enumerate(value):
|
||||
# lin.weight[0, index] = value[index].weight
|
||||
# if self.genes.nodes[key].bias is not None:
|
||||
# lin.bias[0] = self.genes.nodes[key].bias
|
||||
#
|
||||
non_lin = nn.ELU()
|
||||
sequence = nn.Sequential(
|
||||
lin,
|
||||
non_lin
|
||||
)
|
||||
self.add_module('layer_' + str(rank), sequence)
|
||||
self.layers[rank] = sequence
|
||||
self.layer_results[rank] = nodes
|
||||
self.layer_non_recurrent_inputs[rank] = non_recurrent_inputs
|
||||
self.layer_recurrent_inputs[rank] = recurrent_inputs
|
||||
|
||||
self.memory_size = (max(map(lambda element: element[1].node_id, self.genes.nodes.items())) + 1)
|
||||
self.memory = torch.Tensor(self.memory_size)
|
||||
self.output_range = range(self.num_input_nodes, self.num_input_nodes + self.action_num * 2)
|
||||
|
||||
def forward(self, x, last_memory=None):
|
||||
x_flat = self.flatten(x)
|
||||
if last_memory is not None:
|
||||
last_memory_flat = self.flatten(last_memory)
|
||||
elif self.has_recurrent:
|
||||
raise ValueError('Recurrent networks need to be passed their previous memory!')
|
||||
|
||||
memory = torch.Tensor(self.memory_size)
|
||||
outs = []
|
||||
for batch_index, batch_element in enumerate(x_flat):
|
||||
memory[0:self.num_input_nodes] = batch_element
|
||||
for layer_index in range(1, self.layer_num + 1):
|
||||
non_recurrent_in = memory[self.layer_non_recurrent_inputs[layer_index]]
|
||||
non_recurrent_in = torch.stack([non_recurrent_in])
|
||||
if self.has_recurrent and len(self.layer_recurrent_inputs[layer_index]) > 0:
|
||||
recurrent_in = last_memory_flat[batch_index, self.layer_recurrent_inputs[layer_index]]
|
||||
recurrent_in = torch.stack([recurrent_in])
|
||||
|
||||
combined_in = torch.concat([non_recurrent_in, recurrent_in], dim=1)
|
||||
else:
|
||||
combined_in = non_recurrent_in
|
||||
|
||||
memory[self.layer_results[layer_index]] = self.layers[layer_index](combined_in)
|
||||
outs.append(memory[self.output_range])
|
||||
outs = torch.stack(outs)
|
||||
self.memory = torch.Tensor(memory)
|
||||
return torch.reshape(outs, (x.shape[0], outs.shape[1]//2, 2))
|
||||
|
||||
def update_genes_with_weights(self):
|
||||
# todo rework
|
||||
for key, value in self.incoming_connections.items():
|
||||
value.sort(key=lambda element: element.start)
|
||||
|
||||
sequence = self.layers[key]
|
||||
lin = sequence[0]
|
||||
for index, connection in enumerate(value):
|
||||
value[index].weight = float(lin.weight[0, index])
|
||||
if self.genes.nodes[key].bias is not None:
|
||||
self.genes.nodes[key].bias = float(lin.bias[0])
|
||||
|
||||
|
||||
class RecurrentDataSet(BaseDataSet):
|
||||
def __init__(self, states, targets, memory):
|
||||
super().__init__(states, targets)
|
||||
assert len(states) == len(memory), "Needs to have as many states as memories!"
|
||||
self.memory = torch.tensor(np.array(memory), dtype=torch.float32)
|
||||
|
||||
def __getitem__(self, idx):
|
||||
return self.states[idx], self.memory[idx], self.targets[idx]
|
||||
|
||||
|
||||
def train_recurrent(states, memory, targets, model, optimizer):
|
||||
for action in range(model.action_num):
|
||||
data_set = RecurrentDataSet(states[action], targets[action], memory[action])
|
||||
dataloader = DataLoader(data_set, batch_size=512, shuffle=True)
|
||||
loss_fn = create_loss_function(action)
|
||||
|
||||
size = len(dataloader)
|
||||
model.train()
|
||||
for batch, (X, M, y) in enumerate(dataloader):
|
||||
X, y, M = X.to(device), y.to(device), M.to(device)
|
||||
|
||||
# Compute prediction error
|
||||
pred = model(X, M)
|
||||
loss = loss_fn(pred, y)
|
||||
|
||||
# Backpropagation
|
||||
optimizer.zero_grad()
|
||||
loss.backward(retain_graph=True)
|
||||
optimizer.step()
|
||||
|
||||
if batch % 100 == 0:
|
||||
loss, current = loss.item(), batch * len(X)
|
||||
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
|
||||
model.eval()
|
||||
|
||||
del data_set
|
||||
del dataloader
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
sample = np.random.random((1, 1))
|
||||
last_memory = np.zeros((1, 3))
|
||||
|
||||
from labirinth_ai.Models.Genotype import NodeGene, ConnectionGene, Genotype
|
||||
genes = Genotype(nodes={0: NodeGene(0, 'sensor'), 1: NodeGene(1, 'output'), 2: NodeGene(2, 'hidden', 1)},
|
||||
connections=[ConnectionGene(0, 2, True, 0, recurrent=True), ConnectionGene(2, 1, True, 1, 1)])
|
||||
|
||||
model = EvolutionModel(1, 1, 1, genes)
|
||||
|
||||
model = model.to(device)
|
||||
# print(model)
|
||||
print(model.has_recurrent)
|
||||
|
||||
test = model(torch.tensor(sample, dtype=torch.float32), torch.tensor(last_memory, dtype=torch.float32))
|
||||
# test = test.cpu().detach().numpy()
|
||||
# print(test)
|
||||
|
||||
state = np.random.random((1, 1))
|
||||
memory = np.random.random((1, 1))
|
||||
|
||||
target = np.random.random((2, 1))
|
||||
states = [
|
||||
[state],
|
||||
[state],
|
||||
[state],
|
||||
[state],
|
||||
]
|
||||
targets = [
|
||||
[target],
|
||||
[target],
|
||||
[target],
|
||||
[target],
|
||||
]
|
||||
memories = [
|
||||
[memory],
|
||||
[memory],
|
||||
[memory],
|
||||
[memory],
|
||||
]
|
||||
|
||||
optimizer = torch.optim.RMSprop(model.parameters(), lr=1e-3)
|
||||
train_recurrent(states, memories, targets, model, optimizer)
|
|
@ -1,226 +0,0 @@
|
|||
from abc import abstractmethod
|
||||
from typing import List, Dict
|
||||
from copy import copy
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
class NodeGene:
|
||||
valid_types = ['sensor', 'hidden', 'output']
|
||||
|
||||
def __init__(self, node_id, node_type, bias=None):
|
||||
assert node_type in self.valid_types, 'Unknown node type!'
|
||||
self.node_id = node_id
|
||||
self.node_type = node_type
|
||||
if node_type == 'hidden':
|
||||
if bias is None:
|
||||
bias = np.random.random(1)[0] * 2 - 1.0
|
||||
self.bias = bias
|
||||
else:
|
||||
self.bias = None
|
||||
|
||||
def __copy__(self):
|
||||
return NodeGene(self.node_id, self.node_type, bias=self.bias)
|
||||
|
||||
|
||||
class ConnectionGene:
|
||||
def __init__(self, start, end, enabled, innovation_num, weight=None, recurrent=False):
|
||||
self.start = start
|
||||
self.end = end
|
||||
self.enabled = enabled
|
||||
self.innvovation_num = innovation_num
|
||||
self.recurrent = recurrent
|
||||
if weight is None:
|
||||
self.weight = np.random.random(1)[0] * 2 - 1.0
|
||||
else:
|
||||
self.weight = weight
|
||||
|
||||
def __copy__(self):
|
||||
return ConnectionGene(self.start, self.end, self.enabled, self.innvovation_num, self.weight, self.recurrent)
|
||||
|
||||
|
||||
class Genotype:
|
||||
def __init__(self, action_num: int = None, num_input_nodes: int = None,
|
||||
nodes: Dict[int, NodeGene] = None, connections: List[ConnectionGene] = None):
|
||||
self.nodes: Dict[int, NodeGene] = {}
|
||||
self.connections: List[ConnectionGene] = []
|
||||
if action_num is not None and num_input_nodes is not None:
|
||||
node_id = 0
|
||||
for _ in range(num_input_nodes):
|
||||
self.nodes[node_id] = NodeGene(node_id, 'sensor')
|
||||
node_id += 1
|
||||
first_action = node_id
|
||||
for _ in range(action_num * 2):
|
||||
self.nodes[node_id] = NodeGene(node_id, 'output')
|
||||
node_id += 1
|
||||
|
||||
for index in range(num_input_nodes):
|
||||
for action in range(action_num * 2):
|
||||
self.connections.append(
|
||||
ConnectionGene(index, first_action + action, True, index * (action_num * 2) + action)
|
||||
)
|
||||
if nodes is not None and connections is not None:
|
||||
self.nodes = nodes
|
||||
self.connections = connections
|
||||
|
||||
def calculate_rank_of_nodes(self):
|
||||
rank_of_node = {}
|
||||
nodes_to_rank = list(self.nodes.items())
|
||||
while len(nodes_to_rank) > 0:
|
||||
for list_index, (id, node) in enumerate(nodes_to_rank):
|
||||
incoming_connections = list(filter(lambda connection: connection.end == id and
|
||||
not connection.recurrent and connection.enabled,
|
||||
self.connections))
|
||||
if len(incoming_connections) == 0:
|
||||
rank_of_node[id] = 0
|
||||
nodes_to_rank.pop(list_index)
|
||||
break
|
||||
|
||||
incoming_connections_starts = list(map(lambda connection: connection.start, incoming_connections))
|
||||
start_ranks = list(map(lambda element: rank_of_node[element[0]],
|
||||
filter(lambda start_node: start_node[0] in incoming_connections_starts and
|
||||
start_node[0] in rank_of_node.keys(),
|
||||
self.nodes.items())))
|
||||
if len(start_ranks) == len(incoming_connections):
|
||||
rank_of_node[id] = max(start_ranks) + 1
|
||||
nodes_to_rank.pop(list_index)
|
||||
break
|
||||
return rank_of_node
|
||||
|
||||
@abstractmethod
|
||||
def mutate(self, innovation_num) -> int:
|
||||
"""
|
||||
Decides whether or not to mutate this network. Then returns the new innovation number.
|
||||
:param innovation_num: Current innovation number
|
||||
:return: Updated innovation number
|
||||
"""
|
||||
|
||||
# return innovation_num
|
||||
raise NotImplementedError()
|
||||
|
||||
@abstractmethod
|
||||
def cross(self, other, fitnes_self, fitness_other):
|
||||
raise NotImplementedError()
|
||||
# return self
|
||||
|
||||
|
||||
class NeatLike(Genotype):
|
||||
connection_add_thr = 0.3
|
||||
node_add_thr = 0.3
|
||||
disable_conn_thr = 0.1
|
||||
|
||||
# connection_add_thr = 0.0
|
||||
# node_add_thr = 0.0
|
||||
# disable_conn_thr = 0.0
|
||||
|
||||
def mutate(self, innovation_num, allow_recurrent=False) -> int:
|
||||
"""
|
||||
Decides whether or not to mutate this network. Then returns the new innovation number.
|
||||
:param allow_recurrent: Optional parameter allowing or disallowing recurrent connections to form
|
||||
:param innovation_num: Current innovation number
|
||||
:return: Updated innovation number
|
||||
"""
|
||||
# add connection
|
||||
if np.random.random(1)[0] < self.connection_add_thr:
|
||||
nodes = list(self.nodes.keys())
|
||||
rank_of_node = self.calculate_rank_of_nodes()
|
||||
end_nodes = list(filter(lambda node: rank_of_node[node] > 0, nodes))
|
||||
|
||||
connection_tuple = list(map(lambda connection: (connection.start, connection.end), self.connections))
|
||||
|
||||
start = np.random.randint(0, len(nodes))
|
||||
end = np.random.randint(0, len(end_nodes))
|
||||
|
||||
tries = 50
|
||||
while (rank_of_node[end_nodes[end]] == 0 or
|
||||
((not allow_recurrent) and rank_of_node[nodes[start]] > rank_of_node[end_nodes[end]])
|
||||
or nodes[start] == end_nodes[end] or (nodes[start], end_nodes[end]) in connection_tuple) and\
|
||||
tries > 0:
|
||||
end = np.random.randint(0, len(end_nodes))
|
||||
if (not allow_recurrent) and rank_of_node[nodes[start]] > rank_of_node[end_nodes[end]]:
|
||||
start = np.random.randint(0, len(nodes))
|
||||
tries -= 1
|
||||
if tries > 0:
|
||||
innovation_num += 1
|
||||
self.connections.append(
|
||||
ConnectionGene(nodes[start], end_nodes[end], True, innovation_num,
|
||||
recurrent=rank_of_node[nodes[start]] > rank_of_node[end_nodes[end]]))
|
||||
|
||||
if np.random.random(1)[0] < self.node_add_thr:
|
||||
active_connections = list(filter(lambda connection: connection.enabled, self.connections))
|
||||
|
||||
n = np.random.randint(0, len(active_connections))
|
||||
old_connection = active_connections[n]
|
||||
|
||||
new_node = NodeGene(innovation_num, 'hidden')
|
||||
node_id = innovation_num
|
||||
connection_1 = ConnectionGene(old_connection.start, node_id, True, innovation_num,
|
||||
recurrent=old_connection.recurrent)
|
||||
innovation_num += 1
|
||||
connection_2 = ConnectionGene(node_id, old_connection.end, True, innovation_num)
|
||||
innovation_num += 1
|
||||
|
||||
old_connection.enabled = False
|
||||
self.nodes[node_id] = new_node
|
||||
self.connections.append(connection_1)
|
||||
self.connections.append(connection_2)
|
||||
|
||||
if np.random.random(1)[0] < self.disable_conn_thr:
|
||||
active_connections = list(filter(lambda connection: connection.enabled, self.connections))
|
||||
n = np.random.randint(0, len(active_connections))
|
||||
old_connection = active_connections[n]
|
||||
old_connection.enabled = not old_connection.enabled
|
||||
|
||||
return innovation_num
|
||||
|
||||
def cross(self, other, fitnes_self, fitness_other):
|
||||
new_genes = NeatLike()
|
||||
node_nums = set(map(lambda node: node[0], self.nodes.items())).union(
|
||||
set(map(lambda node: node[0], other.nodes.items())))
|
||||
|
||||
connections = {}
|
||||
for connection in self.connections:
|
||||
connections[connection.innvovation_num] = connection
|
||||
|
||||
other_connections = {}
|
||||
for connection in other.connections:
|
||||
other_connections[connection.innvovation_num] = connection
|
||||
|
||||
connection_nums = set(map(lambda connection: connection[0], connections.items())).union(
|
||||
set(map(lambda connection: connection[0], other_connections.items())))
|
||||
|
||||
for node_num in node_nums:
|
||||
if node_num in self.nodes.keys() and node_num in other.nodes.keys():
|
||||
if int(fitness_other) == int(fitnes_self):
|
||||
if np.random.randint(0, 2) == 0:
|
||||
new_genes.nodes[node_num] = copy(self.nodes[node_num])
|
||||
else:
|
||||
new_genes.nodes[node_num] = copy(other.nodes[node_num])
|
||||
elif fitnes_self > fitness_other:
|
||||
new_genes.nodes[node_num] = copy(self.nodes[node_num])
|
||||
else:
|
||||
new_genes.nodes[node_num] = copy(other.nodes[node_num])
|
||||
elif node_num in self.nodes.keys() and int(fitnes_self) >= int(fitness_other):
|
||||
new_genes.nodes[node_num] = copy(self.nodes[node_num])
|
||||
elif node_num in other.nodes.keys() and int(fitnes_self) <= int(fitness_other):
|
||||
new_genes.nodes[node_num] = copy(other.nodes[node_num])
|
||||
|
||||
for connection_num in connection_nums:
|
||||
if connection_num in connections.keys() and connection_num in other_connections.keys():
|
||||
if int(fitness_other) == int(fitnes_self):
|
||||
if np.random.randint(0, 2) == 0:
|
||||
connection = copy(connections[connection_num])
|
||||
else:
|
||||
connection = copy(other_connections[connection_num])
|
||||
elif fitnes_self > fitness_other:
|
||||
connection = copy(connections[connection_num])
|
||||
else:
|
||||
connection = copy(other_connections[connection_num])
|
||||
|
||||
new_genes.connections.append(connection)
|
||||
elif connection_num in connections.keys() and int(fitnes_self) >= int(fitness_other):
|
||||
new_genes.connections.append(copy(connections[connection_num]))
|
||||
elif connection_num in other_connections.keys() and int(fitnes_self) <= int(fitness_other):
|
||||
new_genes.connections.append(copy(other_connections[connection_num]))
|
||||
|
||||
return new_genes
|
|
@ -1,103 +0,0 @@
|
|||
import random
|
||||
import numpy as np
|
||||
|
||||
from labirinth_ai.Models import EvolutionModel
|
||||
from labirinth_ai.Models.Genotype import NeatLike
|
||||
|
||||
|
||||
def fib(n):
|
||||
if n == 0:
|
||||
return [1]
|
||||
elif n < 0:
|
||||
return [0]
|
||||
else:
|
||||
return [fib(n - 1)[0] + fib(n - 2)[0]] + fib(n - 1)
|
||||
|
||||
|
||||
class Population:
|
||||
def __init__(self, subject_class, world, subject_number, do_evolve=True):
|
||||
self.subjects = []
|
||||
self.world = world
|
||||
for _ in range(subject_number):
|
||||
px, py = self.world.generate_free_coordinates()
|
||||
self.subjects.append(subject_class(px, py, genotype_class=NeatLike))
|
||||
self.subject_number = subject_number
|
||||
self.subject_class = subject_class
|
||||
self.do_evolve = do_evolve
|
||||
|
||||
def select(self):
|
||||
ranked = list(self.subjects)
|
||||
ranked.sort(key=lambda subject: subject.accumulated_rewards, reverse=True)
|
||||
|
||||
return ranked[:int(self.subject_number / 2)]
|
||||
|
||||
@classmethod
|
||||
def scatter(cls, n, buckets):
|
||||
out = np.zeros(buckets)
|
||||
if n == 0:
|
||||
return out
|
||||
|
||||
fib_number = 0
|
||||
fibs = fib(fib_number)
|
||||
while np.sum(fibs) <= n and len(fibs) <= buckets:
|
||||
fib_number += 1
|
||||
fibs = fib(fib_number)
|
||||
fib_number -= 1
|
||||
fibs = fib(fib_number)
|
||||
|
||||
for bucket in range(buckets):
|
||||
if bucket < len(fibs):
|
||||
out[bucket] += fibs[bucket]
|
||||
else:
|
||||
break
|
||||
|
||||
return out + cls.scatter(n - np.sum(fibs), buckets)
|
||||
|
||||
def evolve(self):
|
||||
if self.do_evolve:
|
||||
if len(self.subjects) > 1:
|
||||
# get updated weights from the models
|
||||
for subject in self.subjects:
|
||||
subject.model.update_genes_with_weights()
|
||||
|
||||
# crossbreed the current pop
|
||||
best_subjects = self.select()
|
||||
distribution = list(self.scatter(self.subject_number - int(self.subject_number / 2), int(self.subject_number / 2)))
|
||||
|
||||
new_subjects = list(best_subjects)
|
||||
for index, offspring_num in enumerate(distribution):
|
||||
for _ in range(int(offspring_num)):
|
||||
parent_1 = best_subjects[index]
|
||||
parent_2 = best_subjects[random.randint(index + 1, len(best_subjects) - 1)]
|
||||
|
||||
new_genes = parent_1.model.genes.cross(parent_2.model.genes,
|
||||
parent_1.accumulated_rewards, parent_2.accumulated_rewards)
|
||||
|
||||
# position doesn't matter, since mutation will set it
|
||||
new_subject = self.subject_class(0, 0, new_genes)
|
||||
new_subject.history = parent_1.history
|
||||
new_subject.samples = parent_1.samples + parent_2.samples
|
||||
new_subjects.append(new_subject)
|
||||
|
||||
assert len(new_subjects) == self.subject_number, 'All generations should have constant size!'
|
||||
else:
|
||||
new_subjects = self.subjects
|
||||
# mutate the pop
|
||||
mutated_subjects = []
|
||||
innovation_num = max(map(lambda subject: max(map(lambda connection: connection.innvovation_num,
|
||||
subject.model.genes.connections
|
||||
)
|
||||
)
|
||||
, new_subjects))
|
||||
for subject in new_subjects:
|
||||
subject.accumulated_rewards = 0
|
||||
|
||||
innovation_num = subject.model.genes.mutate(innovation_num)
|
||||
|
||||
px, py = self.world.generate_free_coordinates()
|
||||
new_subject = self.subject_class(px, py, subject.model.genes)
|
||||
new_subject.history = subject.history
|
||||
new_subject.samples = subject.samples
|
||||
mutated_subjects.append(new_subject)
|
||||
|
||||
self.subjects = mutated_subjects
|
|
@ -1,982 +0,0 @@
|
|||
import random
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
from tensorflow import keras
|
||||
|
||||
from labirinth_ai.LabyrinthWorld import LabyrinthWorld
|
||||
from labirinth_ai.Models.EvolutionModel import EvolutionModel
|
||||
from labirinth_ai.loss import loss2, loss3
|
||||
from labirinth_ai.Models.BaseModel import BaseModel, train, create_optimizer, device, from_numpy
|
||||
|
||||
# import torch
|
||||
# dtype = torch.float
|
||||
# device = torch.device("cpu")
|
||||
|
||||
|
||||
class Subject:
|
||||
name = 'random'
|
||||
col = 8
|
||||
num = 0
|
||||
random = True
|
||||
r = 255
|
||||
g = 255
|
||||
b = 255
|
||||
|
||||
def __init__(self, x, y):
|
||||
self.alive = True
|
||||
self.x = x
|
||||
self.y = y
|
||||
self.kills = 0
|
||||
self.lives = 1
|
||||
self.tick = 0
|
||||
|
||||
self.id = self.num
|
||||
Subject.num += 1
|
||||
|
||||
def update(self, world: LabyrinthWorld):
|
||||
# 0, 0 is top left
|
||||
right = (1, 0)
|
||||
left = (-1, 0)
|
||||
up = (0, -1)
|
||||
down = (0, 1)
|
||||
directions = []
|
||||
|
||||
if self.x - 1 >= 0:
|
||||
if world.board[self.x - 1, self.y] != 0:
|
||||
directions.append(left)
|
||||
|
||||
if self.x + 1 < world.board_shape[0]:
|
||||
if world.board[self.x + 1, self.y] != 0:
|
||||
directions.append(right)
|
||||
|
||||
if self.y - 1 >= 0:
|
||||
if world.board[self.x, self.y - 1] != 0:
|
||||
directions.append(up)
|
||||
|
||||
if self.y + 1 < world.board_shape[1]:
|
||||
if world.board[self.x, self.y + 1] != 0:
|
||||
directions.append(down)
|
||||
|
||||
if directions != [] and self.alive:
|
||||
if len(directions) > 1:
|
||||
d = directions[random.randint(0, len(directions) - 1)]
|
||||
else:
|
||||
d = directions[0]
|
||||
|
||||
if len(world.subjectDict[(self.x + d[0], self.y + d[1])]) > 0:
|
||||
for sub in world.subjectDict[(self.x + d[0], self.y + d[1])]:
|
||||
if sub.alive:
|
||||
self.kills += 1
|
||||
sub.alive = False
|
||||
self.alive = True
|
||||
|
||||
world.subjectDict[(self.x, self.y)].remove(self)
|
||||
world.trailMix[self.x, self.y] += 1
|
||||
self.x += d[0]
|
||||
self.y += d[1]
|
||||
world.subjectDict[(self.x, self.y)].append(self)
|
||||
|
||||
def respawnUpdate(self, x, y, world: LabyrinthWorld):
|
||||
world.subjectDict[(self.x, self.y)].remove(self)
|
||||
self.x = x
|
||||
self.y = y
|
||||
world.subjectDict[(self.x, self.y)].append(self)
|
||||
self.alive = True
|
||||
self.lives += 1
|
||||
|
||||
|
||||
class QLearner(Subject):
|
||||
name = 'QLearner'
|
||||
col = 14
|
||||
learningRate = 0.25
|
||||
discountFactor = 0.5
|
||||
random = False
|
||||
|
||||
Q = {}
|
||||
def __init__(self, x, y):
|
||||
super(QLearner, self).__init__(x, y)
|
||||
# self.Q = {}
|
||||
self.viewD = 3
|
||||
self.lastAction = None
|
||||
self.lastState = None
|
||||
self.lastReward = 0
|
||||
|
||||
def respawnUpdate(self, x, y, world: LabyrinthWorld):
|
||||
super(QLearner, self).respawnUpdate(x, y, world)
|
||||
self.lastReward -= 20
|
||||
|
||||
def createState(self, world: LabyrinthWorld):
|
||||
state = np.zeros((2 * self.viewD + 1, 2 * self.viewD + 1), np.int) # - 1
|
||||
|
||||
maxdirleft = self.x - max(self.x - (self.viewD), 0)
|
||||
maxdirright = min(self.x + (self.viewD), (world.board_shape[0] - 1)) - self.x
|
||||
maxdirup = self.y - max(self.y - (self.viewD), 0)
|
||||
maxdirdown = min(self.y + (self.viewD), (world.board_shape[1] - 1)) - self.y
|
||||
|
||||
# state[self.viewD - maxdirleft: self.viewD + maxdirright, self.viewD - maxdirup: self.viewD + maxdirdown] = world.board[self.x - maxdirleft: self.x + maxdirright, self.y - maxdirup: self.y + maxdirdown]
|
||||
for sub in world.subjects:
|
||||
if abs(sub.x - self.x) < self.viewD and abs(sub.y - self.y) < self.viewD:
|
||||
if state[self.viewD + sub.x - self.x, self.viewD + sub.y - self.y] != 3:
|
||||
state[self.viewD + sub.x - self.x, self.viewD + sub.y - self.y] = state[self.viewD + sub.x - self.x, self.viewD + sub.y - self.y] * 100 + 1# sub.col
|
||||
|
||||
return state
|
||||
|
||||
def update(self, world: LabyrinthWorld):
|
||||
# 0, 0 is top left
|
||||
right = (1, 0)
|
||||
left = (-1, 0)
|
||||
up = (0, -1)
|
||||
down = (0, 1)
|
||||
directions = []
|
||||
|
||||
if self.x - 1 >= 0:
|
||||
if world.board[self.x - 1, self.y] != 0:
|
||||
directions.append(left)
|
||||
|
||||
if self.x + 1 < world.board_shape[0]:
|
||||
if world.board[self.x + 1, self.y] != 0:
|
||||
directions.append(right)
|
||||
|
||||
if self.y - 1 >= 0:
|
||||
if world.board[self.x, self.y - 1] != 0:
|
||||
directions.append(up)
|
||||
|
||||
if self.y + 1 < world.board_shape[1]:
|
||||
if world.board[self.x, self.y + 1] != 0:
|
||||
directions.append(down)
|
||||
|
||||
if directions != [] and self.alive:
|
||||
state = self.createState(world)
|
||||
|
||||
if str(state) not in self.Q.keys():
|
||||
self.Q[str(state)] = {}
|
||||
for dir in directions:
|
||||
if dir not in self.Q[str(state)].keys():
|
||||
self.Q[str(state)][dir] = random.randint(0, 5)
|
||||
|
||||
allowedActions = dict(filter(lambda elem: elem[0] in directions,self.Q[str(state)].items()))
|
||||
action = max(allowedActions, key=allowedActions.get)
|
||||
|
||||
if self.learningRate != 0:
|
||||
self.Q[str(state)][action] = (1 - self.learningRate) * self.Q[str(state)][action] + self.learningRate * (self.lastReward + self.discountFactor * self.Q[str(state)][action])
|
||||
|
||||
self.lastAction = action
|
||||
self.lastState = state
|
||||
self.lastReward = 0
|
||||
|
||||
if len(action) == 2:
|
||||
if len(world.subjectDict[(self.x + action[0], self.y + action[1])]) > 0:
|
||||
for sub in world.subjectDict[(self.x + action[0], self.y + action[1])]:
|
||||
if sub.alive:
|
||||
self.kills += 1
|
||||
sub.alive = False
|
||||
self.alive = True
|
||||
self.lastReward += 10
|
||||
|
||||
world.subjectDict[(self.x, self.y)].remove(self)
|
||||
self.x += action[0]
|
||||
self.y += action[1]
|
||||
world.subjectDict[(self.x, self.y)].append(self)
|
||||
pass
|
||||
|
||||
|
||||
class DoubleQLearner(QLearner):
|
||||
name = 'DoubleQLearner'
|
||||
col = 11
|
||||
learningRate = 0.5
|
||||
discountFactor = 0.5
|
||||
random = False
|
||||
|
||||
QA = {}
|
||||
QB = {}
|
||||
def __init__(self, x, y):
|
||||
super(DoubleQLearner, self).__init__(x, y)
|
||||
self.viewD = 3
|
||||
self.lastAction = None
|
||||
self.lastState = None
|
||||
self.lastReward = 0
|
||||
|
||||
def respawnUpdate(self, x, y, world: LabyrinthWorld):
|
||||
super(DoubleQLearner, self).respawnUpdate(x, y, world)
|
||||
|
||||
def update(self, world: LabyrinthWorld):
|
||||
# 0, 0 is top left
|
||||
right = (1, 0)
|
||||
left = (-1, 0)
|
||||
up = (0, -1)
|
||||
down = (0, 1)
|
||||
directions = []
|
||||
|
||||
if self.x - 1 >= 0:
|
||||
if world.board[self.x - 1, self.y] != 0:
|
||||
directions.append(left)
|
||||
|
||||
if self.x + 1 < world.board_shape[0]:
|
||||
if world.board[self.x + 1, self.y] != 0:
|
||||
directions.append(right)
|
||||
|
||||
if self.y - 1 >= 0:
|
||||
if world.board[self.x, self.y - 1] != 0:
|
||||
directions.append(up)
|
||||
|
||||
if self.y + 1 < world.board_shape[1]:
|
||||
if world.board[self.x, self.y + 1] != 0:
|
||||
directions.append(down)
|
||||
|
||||
if directions != [] and self.alive:
|
||||
state = self.createState(world)
|
||||
|
||||
if str(state) not in self.QA.keys():
|
||||
self.QA[str(state)] = {}
|
||||
self.QB[str(state)] = {}
|
||||
for dir in directions:
|
||||
if dir not in self.QA[str(state)].keys():
|
||||
self.QA[str(state)][dir] = random.randint(0, 5)
|
||||
self.QB[str(state)][dir] = random.randint(0, 5)
|
||||
|
||||
allowedActionsA = dict(filter(lambda elem: elem[0] in directions, self.QA[str(state)].items()))
|
||||
allowedActionsB = dict(filter(lambda elem: elem[0] in directions, self.QB[str(state)].items()))
|
||||
allowedActions = {}
|
||||
for key in allowedActionsA.keys():
|
||||
allowedActions[key] = allowedActionsA[key] + allowedActionsB[key]
|
||||
|
||||
actionA = max(allowedActionsA, key=allowedActionsA.get)
|
||||
actionB = max(allowedActionsB, key=allowedActionsB.get)
|
||||
action = max(allowedActions, key=allowedActions.get)
|
||||
|
||||
if self.learningRate != 0:
|
||||
if random.randint(0, 1) == 0:
|
||||
valA = self.QA[str(state)][action]
|
||||
self.QA[str(state)][action] = valA + self.learningRate * (self.lastReward + self.discountFactor * self.QB[str(state)][actionA] - valA)
|
||||
else:
|
||||
valB = self.QB[str(state)][action]
|
||||
self.QB[str(state)][action] = valB + self.learningRate * (self.lastReward + self.discountFactor * self.QA[str(state)][actionB] - valB)
|
||||
|
||||
self.lastAction = action
|
||||
self.lastState = state
|
||||
self.lastReward = 0
|
||||
|
||||
if len(action) == 2:
|
||||
if len(world.subjectDict[(self.x + action[0], self.y + action[1])]) > 0:
|
||||
for sub in world.subjectDict[(self.x + action[0], self.y + action[1])]:
|
||||
if sub.alive:
|
||||
self.kills += 1
|
||||
sub.alive = False
|
||||
self.alive = True
|
||||
self.lastReward += 10
|
||||
|
||||
world.subjectDict[(self.x, self.y)].remove(self)
|
||||
self.x += action[0]
|
||||
self.y += action[1]
|
||||
world.subjectDict[(self.x, self.y)].append(self)
|
||||
pass
|
||||
|
||||
|
||||
RECALCULATE = False
|
||||
class NetLearner(Subject):
|
||||
right = (1, 0)
|
||||
left = (-1, 0)
|
||||
up = (0, -1)
|
||||
down = (0, 1)
|
||||
act2IDict = {right: 0, left: 1, up: 2, down: 3}
|
||||
|
||||
name = 'NetLearner'
|
||||
col = 15
|
||||
viewD = 3
|
||||
historyLength = 2
|
||||
channels = 4
|
||||
|
||||
learningRate = 0.001
|
||||
discountFactor = 0.5
|
||||
randomBuffer = 0
|
||||
batchsize = 1000
|
||||
randomBuffer = max(4*batchsize, randomBuffer)
|
||||
randomChance = 9
|
||||
|
||||
historySizeMul = 20
|
||||
|
||||
# samples = []
|
||||
|
||||
# x_in = keras.Input(shape=(4 * (2 * viewD + 1) * (2 * viewD + 1) + 2))
|
||||
# target = keras.Input(shape=(10, 1))
|
||||
# inVec = keras.layers.Flatten()(x_in)
|
||||
# # kernel_regularizer=keras.regularizers.l2(0.01)
|
||||
# actions = keras.layers.Dense((3 * (2 * viewD + 1) * (2 * viewD + 1)), activation='relu')(inVec)
|
||||
# actions = keras.layers.Dense(((2 * viewD + 1) * (2 * viewD + 1)), activation='relu')(actions)
|
||||
# actions = keras.layers.Dense(8, activation='linear', use_bias=False)(actions)
|
||||
#
|
||||
# model = keras.Model(inputs=x_in, outputs=actions)
|
||||
#
|
||||
# # model.compile(optimizer='adam', loss=loss, target_tensors=[target])
|
||||
# model.compile(optimizer=tf.keras.optimizers.RMSprop(learningRate), loss=loss, target_tensors=[target])
|
||||
|
||||
def respawnUpdate(self, x, y, world: LabyrinthWorld):
|
||||
super(NetLearner, self).respawnUpdate(x, y, world)
|
||||
# self.lastReward -= 20
|
||||
|
||||
if len(self.samples) < self.randomBuffer or random.randint(0, 10) > self.randomChance:
|
||||
self.random = True
|
||||
# print('Rando ' + self.name)
|
||||
pass
|
||||
else:
|
||||
self.random = False
|
||||
# print('Slau ' + self.name)
|
||||
|
||||
self.strikes = 0
|
||||
|
||||
def __init__(self, x, y, genes=None, genotype_class=None):
|
||||
super(NetLearner, self).__init__(x, y)
|
||||
|
||||
self.action = None
|
||||
self.state = None
|
||||
self.actDict = {}
|
||||
|
||||
self.history = []
|
||||
self.lastAction = None
|
||||
self.lastState = None
|
||||
self.lastReward = 0
|
||||
self.lastVal = 0
|
||||
self.random = False
|
||||
self.nextTrain = self.randomBuffer
|
||||
|
||||
self.samples = []
|
||||
|
||||
self.x_in = []
|
||||
self.actions = []
|
||||
self.target = []
|
||||
|
||||
# self.model = BaseModel(self.viewD, 4, 4).to(device)
|
||||
self.model = EvolutionModel(self.viewD, 4, 4, genes=genes, genotype_class=genotype_class).to(device)
|
||||
|
||||
self.optimizer = create_optimizer(self.model)
|
||||
|
||||
if len(self.samples) < self.randomBuffer:
|
||||
self.random = True
|
||||
else:
|
||||
self.random = False
|
||||
|
||||
self.strikes = 0
|
||||
|
||||
self.lastRewards = []
|
||||
|
||||
self.accumulated_rewards = 0
|
||||
|
||||
def visualize(self):
|
||||
print(self.name)
|
||||
layers = self.model.get_weights()
|
||||
# layers.reverse()
|
||||
layersN = [[0, 1, 8, 9, 16], [2, 3, 10, 11, 17], [4, 5, 12, 13, 18], [6, 7, 14, 15, 19]]
|
||||
for action in range(8):
|
||||
v = np.zeros((1, 2))
|
||||
v[0][0 if action < 4 else 1] = 1.0
|
||||
layerN = list(layersN[action % 4])
|
||||
layerN.reverse()
|
||||
for n in layerN:
|
||||
l = layers[n]
|
||||
if len(l.shape) == 2:
|
||||
layer = np.transpose(l)
|
||||
v = np.dot(v, layer)
|
||||
else:
|
||||
layer = np.array([l])
|
||||
v = v + layer
|
||||
lastAction = v[0, -2:]
|
||||
v = np.reshape(v[0, :-2], (4, (2 * self.viewD + 1), (2 * self.viewD + 1)))
|
||||
|
||||
# right, left, up, down
|
||||
dir = {0: 'right', 1: 'left', 2: 'up', 3: 'down'}
|
||||
dir = dir[action % 4]
|
||||
#0-3 current
|
||||
#4-8 future
|
||||
if action < 4:
|
||||
time = 'current '
|
||||
else:
|
||||
time = 'future '
|
||||
import matplotlib
|
||||
import matplotlib.pyplot as plt
|
||||
fig, axs = plt.subplots(2, 2, figsize=(5, 5))
|
||||
|
||||
fig.suptitle(time + dir)
|
||||
im = axs[0, 0].pcolor(np.rot90(v[0]))
|
||||
fig.colorbar(im, ax=axs[0, 0])
|
||||
axs[0, 0].set_title('board')
|
||||
|
||||
axs[0, 1].pcolor(np.rot90(v[1]))
|
||||
fig.colorbar(im, ax=axs[0, 1])
|
||||
axs[0, 1].set_title('subjects')
|
||||
|
||||
axs[1, 0].pcolor(np.rot90(v[2]))
|
||||
fig.colorbar(im, ax=axs[1, 0])
|
||||
axs[1, 0].set_title('trail')
|
||||
|
||||
axs[1, 1].pcolor(np.rot90(v[3]))
|
||||
fig.colorbar(im, ax=axs[1, 1])
|
||||
axs[1, 1].set_title('grass')
|
||||
plt.show(block=True)
|
||||
|
||||
def createState(self, world: LabyrinthWorld):
|
||||
state = np.zeros((2 * self.viewD + 1, 2 * self.viewD + 1), np.float) # - 1
|
||||
state2 = np.zeros((2 * self.viewD + 1, 2 * self.viewD + 1), np.float) # - 1
|
||||
state3 = np.zeros((2 * self.viewD + 1, 2 * self.viewD + 1), np.float) # - 1
|
||||
state4 = np.zeros((2 * self.viewD + 1, 2 * self.viewD + 1), np.float) # - 1
|
||||
|
||||
maxdirleft = self.x - max(self.x - (self.viewD), 0)
|
||||
maxdirright = min(self.x + (self.viewD), (world.board_shape[0] - 1)) - self.x
|
||||
maxdirup = self.y - max(self.y - (self.viewD), 0)
|
||||
maxdirdown = min(self.y + (self.viewD), (world.board_shape[1] - 1)) - self.y
|
||||
|
||||
state[self.viewD - maxdirleft: self.viewD + maxdirright, self.viewD - maxdirup: self.viewD + maxdirdown] = world.board[self.x - maxdirleft: self.x + maxdirright, self.y - maxdirup: self.y + maxdirdown]
|
||||
# for sub in world.subjects:
|
||||
# if abs(sub.x - self.x) < self.viewD and abs(sub.y - self.y) < self.viewD:
|
||||
# if state[self.viewD + sub.x - self.x, self.viewD + sub.y - self.y] != 3:
|
||||
# state2[self.viewD + sub.x - self.x, self.viewD + sub.y - self.y] = sub.col
|
||||
for x in range(-maxdirleft, maxdirright, 1):
|
||||
for y in range(-maxdirup, maxdirdown, 1):
|
||||
if world.subjectDict[(self.x + x, self.y + y)] != []:
|
||||
state2[x + maxdirleft, y + maxdirup] = 1#world.subjectDict[(self.x + x, self.y + y)][0].col
|
||||
|
||||
state3[self.viewD - maxdirleft: self.viewD + maxdirright, self.viewD - maxdirup: self.viewD + maxdirdown] = world.trailMix[self.x - maxdirleft: self.x + maxdirright, self.y - maxdirup: self.y + maxdirdown]
|
||||
state4[self.viewD - maxdirleft: self.viewD + maxdirright, self.viewD - maxdirup: self.viewD + maxdirdown] = world.hunter_grass[self.x - maxdirleft: self.x + maxdirright, self.y - maxdirup: self.y + maxdirdown]
|
||||
|
||||
if not self.random:
|
||||
test=1
|
||||
|
||||
area = np.reshape(np.stack((state, state2, state3, state4)), (4 * (2 * self.viewD + 1) * (2 * self.viewD + 1)))
|
||||
action = [0, 0]
|
||||
if self.lastAction is not None:
|
||||
action = self.lastAction
|
||||
return np.reshape(np.concatenate((area, action)), (1, 4 * (2 * self.viewD + 1) * (2 * self.viewD + 1) + 2))
|
||||
|
||||
def generate_valid_directions(self, world: LabyrinthWorld):
|
||||
directions = []
|
||||
if self.x - 1 >= 0:
|
||||
if world.board[self.x - 1, self.y] != 0:
|
||||
directions.append(self.left)
|
||||
|
||||
if self.x + 1 < world.board_shape[0]:
|
||||
if world.board[self.x + 1, self.y] != 0:
|
||||
directions.append(self.right)
|
||||
|
||||
if self.y - 1 >= 0:
|
||||
if world.board[self.x, self.y - 1] != 0:
|
||||
directions.append(self.up)
|
||||
|
||||
if self.y + 1 < world.board_shape[1]:
|
||||
if world.board[self.x, self.y + 1] != 0:
|
||||
directions.append(self.down)
|
||||
return directions
|
||||
|
||||
def calculateAction(self, world: LabyrinthWorld, vals=None, state=None):
|
||||
# 0, 0 is top left
|
||||
directions = self.generate_valid_directions(world)
|
||||
|
||||
if directions == []:
|
||||
print('Wut?')
|
||||
return
|
||||
|
||||
if directions != [] and self.alive:
|
||||
if state is None:
|
||||
state = self.createState(world)
|
||||
if vals is None:
|
||||
vals = self.model(from_numpy(state)).detach().numpy()
|
||||
vals = np.reshape(np.transpose(np.reshape(vals, (4, 2)), (1, 0)),
|
||||
(1, 8))
|
||||
|
||||
self.actDict = {self.right: vals[0][0] + vals[0][4], self.left: vals[0][1] + vals[0][5], self.up: vals[0][2] + vals[0][6], self.down: vals[0][3] + vals[0][7]}
|
||||
|
||||
allowedActions = dict(filter(lambda elem: elem[0] in directions, self.actDict.items()))
|
||||
|
||||
# if self.name == 'Herbivore' and self.id == 11 and not self.random:
|
||||
# print(allowedActions)
|
||||
# print(self.lastReward)
|
||||
if self.strikes <= 0:
|
||||
self.random = False
|
||||
|
||||
if not self.random:
|
||||
self.action = max(allowedActions, key=allowedActions.get)
|
||||
else:
|
||||
self.action = self.randomAct(world)
|
||||
|
||||
self.state = state
|
||||
|
||||
def update(self, world: LabyrinthWorld, doTrain=True):
|
||||
if self.lastAction is not None:
|
||||
if not self.random:
|
||||
if self.lastAction[0] + self.action[0] == 0 and self.lastAction[1] + self.action[1] == 0:
|
||||
self.strikes += 1
|
||||
else:
|
||||
self.strikes -= 1
|
||||
if self.strikes > 100:
|
||||
self.random = True
|
||||
else:
|
||||
self.strikes -= 1
|
||||
|
||||
if len(self.history) >= self.historyLength:
|
||||
self.history.pop(0)
|
||||
self.history.append((self.lastState.copy(), int(self.act2IDict[self.lastAction]), int(self.lastVal), float(self.lastReward), np.array(self.lastRewards)))
|
||||
|
||||
# if self.lastReward != 0 or random.randint(0, 9) == 0:
|
||||
if len(self.history) == self.historyLength:
|
||||
self.samples.append(self.history.copy())
|
||||
|
||||
# if len(self.samples) % self.batchsize == 0 and len(self.samples) >= self.randomBuffer:
|
||||
if len(self.samples) > self.nextTrain and doTrain:
|
||||
print('train', len(self.samples))
|
||||
self.train()
|
||||
self.nextTrain = len(self.samples)
|
||||
self.nextTrain = min(self.batchsize + self.nextTrain, (self.historySizeMul + 1) * self.batchsize)
|
||||
print(len(self.samples), self.nextTrain)
|
||||
|
||||
if not self.random:
|
||||
self.accumulated_rewards += self.lastReward
|
||||
|
||||
self.lastAction = self.action
|
||||
self.lastState = self.state
|
||||
self.lastReward = 0
|
||||
self.lastVal = self.actDict[self.action]
|
||||
|
||||
maxVal = 0
|
||||
|
||||
self.executeAction(world, self.action)
|
||||
|
||||
def randomAct(self, world: LabyrinthWorld):
|
||||
directions = self.generate_valid_directions(world)
|
||||
|
||||
if len(directions) == 0:
|
||||
return 0, 0
|
||||
|
||||
d = random.randint(0, len(directions) - 1)
|
||||
action = directions[d]
|
||||
|
||||
return action
|
||||
|
||||
def executeAction(self, world: LabyrinthWorld, action):
|
||||
pass
|
||||
|
||||
def generateSamples(self):
|
||||
# history element: (self.lastState.copy(), self.act2IDict[self.lastAction], self.lastVal, self.lastReward, np.array(self.lastRewards))
|
||||
# history: [t-2, t-1]
|
||||
states = []
|
||||
targets = []
|
||||
for i in range(4):
|
||||
true_batch = int(self.batchsize/4)
|
||||
target = np.zeros((true_batch, 2, 1))
|
||||
samples = np.array(self.samples[:-self.batchsize])
|
||||
# print('Samples for ' + str(i))
|
||||
# print(len(samples))
|
||||
samples = np.array(list(filter(lambda e: e[0, 1] == i, list(samples))))
|
||||
# print(len(samples))
|
||||
partTwo = True
|
||||
if len(samples) == 0:
|
||||
print('No samples for:' + str(i))
|
||||
partTwo = False
|
||||
samples = np.array(self.samples[:-self.batchsize])
|
||||
buffer_size = len(samples)
|
||||
index = np.random.choice(np.arange(buffer_size),
|
||||
size=true_batch,
|
||||
replace=True)
|
||||
samples = samples[index]
|
||||
# self.samples = []
|
||||
target[:, 1, 0] = samples[:, 0, 3] # reward t-2 got
|
||||
if partTwo:
|
||||
if RECALCULATE:
|
||||
nextState = np.concatenate(samples[:, 1, 0]) #states of t-1
|
||||
nextVals = self.model(from_numpy(nextState)).detach().numpy()
|
||||
|
||||
nextVals2 = np.max(nextVals[:, :, 0] + nextVals[:, :, 1], axis=1)
|
||||
target[:, 0, 0] = nextVals2 #best q t-1
|
||||
else:
|
||||
target[:, 0, 0] = samples[:, 1, 2] #best q t-1
|
||||
|
||||
targets.append(target)
|
||||
|
||||
states.append(np.concatenate(samples[:, 0, 0])) #states of t-2
|
||||
|
||||
return states, targets
|
||||
|
||||
def train(self):
|
||||
print(self.name)
|
||||
states, target = self.generateSamples()
|
||||
train(states, target, self.model, self.optimizer)
|
||||
|
||||
self.samples = self.samples[-self.historySizeMul*self.batchsize:]
|
||||
|
||||
# print(self.model.get_weights())
|
||||
|
||||
pass
|
||||
|
||||
|
||||
class Herbivore(NetLearner):
|
||||
name = 'Herbivore'
|
||||
col = 9
|
||||
r = 255
|
||||
g = 255
|
||||
b = 0
|
||||
viewD = 3
|
||||
historyLength = 2
|
||||
|
||||
learningRate = 0.001
|
||||
discountFactor = 0.5
|
||||
randomBuffer = 0
|
||||
batchsize = 1000
|
||||
randomBuffer = max(2 * batchsize, randomBuffer)
|
||||
randomChance = 9
|
||||
|
||||
samples = []
|
||||
|
||||
def createState(self, world: LabyrinthWorld):
|
||||
state = np.zeros((2 * self.viewD + 1, 2 * self.viewD + 1), np.float) # - 1
|
||||
state2 = np.zeros((2 * self.viewD + 1, 2 * self.viewD + 1), np.float) # - 1
|
||||
state3 = np.zeros((2 * self.viewD + 1, 2 * self.viewD + 1), np.float) # - 1
|
||||
state4 = np.zeros((2 * self.viewD + 1, 2 * self.viewD + 1), np.float) # - 1
|
||||
|
||||
maxdirleft = self.x - max(self.x - (self.viewD), 0)
|
||||
maxdirright = min(self.x + (self.viewD), (world.board_shape[0] - 1)) - self.x
|
||||
maxdirup = self.y - max(self.y - (self.viewD), 0)
|
||||
maxdirdown = min(self.y + (self.viewD), (world.board_shape[1] - 1)) - self.y
|
||||
|
||||
state[self.viewD - maxdirleft: self.viewD + maxdirright, self.viewD - maxdirup: self.viewD + maxdirdown] = world.board[self.x - maxdirleft: self.x + maxdirright, self.y - maxdirup: self.y + maxdirdown]
|
||||
# for sub in world.subjects:
|
||||
# if abs(sub.x - self.x) < self.viewD and abs(sub.y - self.y) < self.viewD:
|
||||
# if state[self.viewD + sub.x - self.x, self.viewD + sub.y - self.y] != 3:
|
||||
# state2[self.viewD + sub.x - self.x, self.viewD + sub.y - self.y] = sub.col
|
||||
for x in range(-maxdirleft, maxdirright, 1):
|
||||
for y in range(-maxdirup, maxdirdown, 1):
|
||||
if world.subjectDict[(self.x + x, self.y + y)] != []:
|
||||
state2[x + maxdirleft, y + maxdirup] = 1#world.subjectDict[(self.x + x, self.y + y)][0].col
|
||||
|
||||
state3[self.viewD - maxdirleft: self.viewD + maxdirright, self.viewD - maxdirup: self.viewD + maxdirdown] = world.trailMix[self.x - maxdirleft: self.x + maxdirright, self.y - maxdirup: self.y + maxdirdown]
|
||||
state4[self.viewD - maxdirleft: self.viewD + maxdirright, self.viewD - maxdirup: self.viewD + maxdirdown] = world.grass[self.x - maxdirleft: self.x + maxdirright, self.y - maxdirup: self.y + maxdirdown]
|
||||
|
||||
if not self.random:
|
||||
test=1
|
||||
|
||||
area = np.reshape(np.stack((state, state2, state3, state4)), (4 * (2 * self.viewD + 1) * (2 * self.viewD + 1)))
|
||||
action = [0, 0]
|
||||
if self.lastAction is not None:
|
||||
action = self.lastAction
|
||||
return np.reshape(np.concatenate((area, action)), (1, 4 * (2 * self.viewD + 1) * (2 * self.viewD + 1) + 2))
|
||||
|
||||
def executeAction(self, world: LabyrinthWorld, action):
|
||||
directions = self.generate_valid_directions(world)
|
||||
if len(action) == 2:
|
||||
if len(world.subjectDict[(self.x + action[0], self.y + action[1])]) > 0:
|
||||
for sub in world.subjectDict[(self.x + action[0], self.y + action[1])]:
|
||||
if isinstance(sub, Hunter):
|
||||
if sub.alive:
|
||||
sub.kills += 1
|
||||
sub.alive = True
|
||||
sub.lastReward += 10
|
||||
self.alive = False
|
||||
|
||||
self.lastRewards = []
|
||||
if self.right in directions:
|
||||
self.lastRewards.append(world.grass[self.x + 1, self.y])
|
||||
else:
|
||||
self.lastRewards.append(0)
|
||||
if self.left in directions:
|
||||
self.lastRewards.append(world.grass[self.x - 1, self.y])
|
||||
else:
|
||||
self.lastRewards.append(0)
|
||||
if self.up in directions:
|
||||
self.lastRewards.append(world.grass[self.x, self.y - 1])
|
||||
else:
|
||||
self.lastRewards.append(0)
|
||||
if self.down in directions:
|
||||
self.lastRewards.append(world.grass[self.x, self.y + 1])
|
||||
else:
|
||||
self.lastRewards.append(0)
|
||||
assert len(self.lastRewards) == 4, 'Last Rewards not filled correctly!'
|
||||
|
||||
world.subjectDict[(self.x, self.y)].remove(self)
|
||||
# self.lastReward += world.trailMix[self.x, self.y]
|
||||
self.x += action[0]
|
||||
self.y += action[1]
|
||||
world.subjectDict[(self.x, self.y)].append(self)
|
||||
world.trailMix[self.x, self.y] = max(1.0, world.trailMix[self.x, self.y])
|
||||
self.lastReward += (world.grass[self.x, self.y] - 0.0)
|
||||
world.grass[self.x, self.y] = 0
|
||||
world.hunter_grass[self.x, self.y] = 0
|
||||
|
||||
def generate_valid_directions(self, world: LabyrinthWorld):
|
||||
directions = []
|
||||
if self.x - 1 >= 0:
|
||||
if world.board[self.x - 1, self.y] != 0:
|
||||
if not world.subjectDict[(self.x - 1, self.y)]:
|
||||
directions.append(self.left)
|
||||
|
||||
if self.x + 1 < world.board_shape[0]:
|
||||
if world.board[self.x + 1, self.y] != 0:
|
||||
if not world.subjectDict[(self.x + 1, self.y)]:
|
||||
directions.append(self.right)
|
||||
|
||||
if self.y - 1 >= 0:
|
||||
if world.board[self.x, self.y - 1] != 0:
|
||||
if not world.subjectDict[(self.x, self.y - 1)]:
|
||||
directions.append(self.up)
|
||||
|
||||
if self.y + 1 < world.board_shape[1]:
|
||||
if world.board[self.x, self.y + 1] != 0:
|
||||
if not world.subjectDict[(self.x, self.y + 1)]:
|
||||
directions.append(self.down)
|
||||
return directions
|
||||
|
||||
def randomAct(self, world: LabyrinthWorld):
|
||||
directions = []
|
||||
actDict = {}
|
||||
|
||||
if self.x - 1 >= 0:
|
||||
if world.board[self.x - 1, self.y] != 0:
|
||||
if not world.subjectDict[(self.x - 1, self.y)]:
|
||||
directions.append(self.left)
|
||||
actDict[self.left] = world.grass[self.x - 1, self.y]
|
||||
|
||||
if self.x + 1 < world.board_shape[0]:
|
||||
if world.board[self.x + 1, self.y] != 0:
|
||||
if not world.subjectDict[(self.x + 1, self.y)]:
|
||||
directions.append(self.right)
|
||||
actDict[self.right] = world.grass[self.x + 1, self.y]
|
||||
|
||||
if self.y - 1 >= 0:
|
||||
if world.board[self.x, self.y - 1] != 0:
|
||||
if not world.subjectDict[(self.x, self.y - 1)]:
|
||||
directions.append(self.up)
|
||||
actDict[self.up] = world.grass[self.x, self.y - 1]
|
||||
|
||||
if self.y + 1 < world.board_shape[1]:
|
||||
if world.board[self.x, self.y + 1] != 0:
|
||||
if not world.subjectDict[(self.x, self.y + 1)]:
|
||||
directions.append(self.down)
|
||||
actDict[self.down] = world.grass[self.x, self.y + 1]
|
||||
if len(directions) == 0:
|
||||
return 0, 0
|
||||
|
||||
allowedActions = dict(filter(lambda elem: elem[0] in directions, actDict.items()))
|
||||
action = max(allowedActions, key=allowedActions.get)
|
||||
|
||||
return action
|
||||
|
||||
def respawnUpdate(self, x, y, world: LabyrinthWorld):
|
||||
super(Herbivore, self).respawnUpdate(x, y, world)
|
||||
# self.lastReward -= 1
|
||||
|
||||
|
||||
class Hunter(NetLearner):
|
||||
name = 'Hunter'
|
||||
hunterGrassScale = 0.5
|
||||
r = 0
|
||||
g = 255
|
||||
b = 255
|
||||
def randomAct(self, world: LabyrinthWorld):
|
||||
directions = []
|
||||
actDict = {}
|
||||
|
||||
if self.x - 1 >= 0:
|
||||
if world.board[self.x - 1, self.y] > 0.01:
|
||||
directions.append(self.left)
|
||||
|
||||
sub = self.getClosestSubject(world, self.x - 1, self.y)
|
||||
dist = self.viewD
|
||||
if sub is not None:
|
||||
dist = np.sqrt(np.square(self.x - 1 - sub.x) + np.square(self.y - sub.y))
|
||||
distReward = self.viewD - dist
|
||||
|
||||
actDict[self.left] = world.trailMix[self.x - 1, self.y] + world.hunter_grass[self.x - 1, self.y] * self.hunterGrassScale + distReward
|
||||
if len(world.subjectDict[(self.x + self.left[0], self.y + self.left[1])]) > 0:
|
||||
for sub in world.subjectDict[(self.x + self.left[0], self.y + self.left[1])]:
|
||||
if sub.col != self.col:
|
||||
actDict[self.left] += 10
|
||||
|
||||
if self.x + 1 < world.board_shape[0]:
|
||||
if world.board[self.x + 1, self.y] > 0.01:
|
||||
directions.append(self.right)
|
||||
|
||||
sub = self.getClosestSubject(world, self.x + 1, self.y)
|
||||
dist = self.viewD
|
||||
if sub is not None:
|
||||
dist = np.sqrt(np.square(self.x + 1 - sub.x) + np.square(self.y - sub.y))
|
||||
distReward = self.viewD - dist
|
||||
|
||||
actDict[self.right] = world.trailMix[self.x + 1, self.y] + world.hunter_grass[self.x + 1, self.y] * self.hunterGrassScale + distReward
|
||||
if len(world.subjectDict[(self.x + self.right[0], self.y + self.right[1])]) > 0:
|
||||
for sub in world.subjectDict[(self.x + self.right[0], self.y + self.right[1])]:
|
||||
if sub.col != self.col:
|
||||
actDict[self.right] += 10
|
||||
|
||||
if self.y - 1 >= 0:
|
||||
if world.board[self.x, self.y - 1] > 0.01:
|
||||
directions.append(self.up)
|
||||
|
||||
sub = self.getClosestSubject(world, self.x, self.y - 1)
|
||||
dist = self.viewD
|
||||
if sub is not None:
|
||||
dist = np.sqrt(np.square(self.x - sub.x) + np.square(self.y - 1 - sub.y))
|
||||
distReward = self.viewD - dist
|
||||
|
||||
actDict[self.up] = world.trailMix[self.x, self.y - 1] + world.hunter_grass[self.x, self.y - 1] * self.hunterGrassScale + distReward
|
||||
if len(world.subjectDict[(self.x + self.up[0], self.y + self.up[1])]) > 0:
|
||||
for sub in world.subjectDict[(self.x + self.up[0], self.y + self.up[1])]:
|
||||
if sub.col != self.col:
|
||||
actDict[self.up] += 10
|
||||
|
||||
if self.y + 1 < world.board_shape[1]:
|
||||
if world.board[self.x, self.y + 1] > 0.01:
|
||||
directions.append(self.down)
|
||||
|
||||
sub = self.getClosestSubject(world, self.x, self.y + 1)
|
||||
dist = self.viewD
|
||||
if sub is not None:
|
||||
dist = np.sqrt(np.square(self.x - sub.x) + np.square(self.y + 1 - sub.y))
|
||||
distReward = self.viewD - dist
|
||||
|
||||
actDict[self.down] = world.trailMix[self.x, self.y + 1] + world.hunter_grass[self.x, self.y + 1] * self.hunterGrassScale + distReward
|
||||
if len(world.subjectDict[(self.x + self.down[0], self.y + self.down[1])]) > 0:
|
||||
for sub in world.subjectDict[(self.x + self.down[0], self.y + self.down[1])]:
|
||||
if sub.col != self.col:
|
||||
actDict[self.down] += 10
|
||||
|
||||
if len(actDict) > 0:
|
||||
allowedActions = dict(filter(lambda elem: elem[0] in directions, actDict.items()))
|
||||
else:
|
||||
return super(Hunter, self).randomAct(world)
|
||||
action = max(allowedActions, key=allowedActions.get)
|
||||
|
||||
return action
|
||||
|
||||
def respawnUpdate(self, x, y, world: LabyrinthWorld):
|
||||
super(Hunter, self).respawnUpdate(x, y, world)
|
||||
self.lastReward -= 1
|
||||
|
||||
def getClosestSubject(self, world, x, y):
|
||||
for dist in range(1, self.viewD):
|
||||
dy = dist
|
||||
for dx in range(-dist, dist):
|
||||
if world.board_shape[0] > x + dx >= 0 and world.board_shape[1] > y + dy >= 0:
|
||||
for sub in world.subjectDict[(x + dx, y + dy)]:
|
||||
if sub.alive and sub.col != self.col:
|
||||
return sub
|
||||
|
||||
dy = -dist
|
||||
for dx in range(-dist, dist):
|
||||
if world.board_shape[0] > x + dx >= 0 and world.board_shape[1] > y + dy >= 0:
|
||||
for sub in world.subjectDict[(x + dx, y + dy)]:
|
||||
if sub.alive and sub.col != self.col:
|
||||
return sub
|
||||
|
||||
dx = dist
|
||||
for dy in range(-dist, dist):
|
||||
if world.board_shape[0] > x + dx >= 0 and world.board_shape[1] > y + dy >= 0:
|
||||
for sub in world.subjectDict[(x + dx, y + dy)]:
|
||||
if sub.alive and sub.col != self.col:
|
||||
return sub
|
||||
|
||||
dx = -dist
|
||||
for dy in range(-dist, dist):
|
||||
if world.board_shape[0] > x + dx >= 0 and world.board_shape[1] > y + dy >= 0:
|
||||
for sub in world.subjectDict[(x + dx, y + dy)]:
|
||||
if sub.alive and sub.col != self.col:
|
||||
return sub
|
||||
return None
|
||||
|
||||
def executeAction(self, world: LabyrinthWorld, action):
|
||||
grass_factor = 0.5
|
||||
|
||||
directions = self.generate_valid_directions(world)
|
||||
|
||||
if len(action) == 2:
|
||||
right_kill = left_kill = up_kill = down_kill = False
|
||||
if self.right in directions:
|
||||
for sub in world.subjectDict[(self.x + self.right[0], self.y + self.right[1])]:
|
||||
if sub.alive:
|
||||
if sub.col != self.col:
|
||||
right_kill = True
|
||||
if self.left in directions:
|
||||
for sub in world.subjectDict[(self.x + self.left[0], self.y + self.left[1])]:
|
||||
if sub.alive:
|
||||
if sub.col != self.col:
|
||||
left_kill = True
|
||||
if self.up in directions:
|
||||
for sub in world.subjectDict[(self.x + self.up[0], self.y + self.up[1])]:
|
||||
if sub.alive:
|
||||
if sub.col != self.col:
|
||||
up_kill = True
|
||||
if self.down in directions:
|
||||
for sub in world.subjectDict[(self.x + self.down[0], self.y + self.down[1])]:
|
||||
if sub.alive:
|
||||
if sub.col != self.col:
|
||||
down_kill = True
|
||||
|
||||
if len(world.subjectDict[(self.x + action[0], self.y + action[1])]) > 0:
|
||||
for sub in world.subjectDict[(self.x + action[0], self.y + action[1])]:
|
||||
if sub.alive:
|
||||
self.kills += 1
|
||||
if sub.col != self.col:
|
||||
self.lastReward += 10
|
||||
sub.alive = False
|
||||
self.alive = True
|
||||
|
||||
self.lastRewards = []
|
||||
if self.right in directions:
|
||||
sub = self.getClosestSubject(world, self.x + 1, self.y)
|
||||
dist = self.viewD
|
||||
if sub is not None:
|
||||
dist = np.sqrt(np.square(self.x + 1 - sub.x) + np.square(self.y - sub.y))
|
||||
distReward = self.viewD - dist
|
||||
if right_kill:
|
||||
self.lastRewards.append(10 + world.trailMix[self.x + 1, self.y] + world.hunter_grass[self.x + 1, self.y] * grass_factor + distReward)
|
||||
else:
|
||||
self.lastRewards.append(world.trailMix[self.x + 1, self.y] + world.hunter_grass[self.x + 1, self.y] * grass_factor + distReward)
|
||||
else:
|
||||
self.lastRewards.append(0)
|
||||
if self.left in directions:
|
||||
sub = self.getClosestSubject(world, self.x - 1, self.y)
|
||||
dist = self.viewD
|
||||
if sub is not None:
|
||||
dist = np.sqrt(np.square(self.x - 1 - sub.x) + np.square(self.y - sub.y))
|
||||
distReward = self.viewD - dist
|
||||
if left_kill:
|
||||
self.lastRewards.append(10 + world.trailMix[self.x - 1, self.y] + world.hunter_grass[self.x - 1, self.y] * grass_factor + distReward)
|
||||
else:
|
||||
self.lastRewards.append(world.trailMix[self.x - 1, self.y] + world.hunter_grass[self.x - 1, self.y] * grass_factor + distReward)
|
||||
else:
|
||||
self.lastRewards.append(0)
|
||||
if self.up in directions:
|
||||
sub = self.getClosestSubject(world, self.x, self.y - 1)
|
||||
dist = self.viewD
|
||||
if sub is not None:
|
||||
dist = np.sqrt(np.square(self.x - sub.x) + np.square(self.y - sub.y - 1))
|
||||
distReward = self.viewD - dist
|
||||
if up_kill:
|
||||
self.lastRewards.append(10 + world.trailMix[self.x, self.y - 1] + world.hunter_grass[self.x, self.y - 1] * grass_factor + distReward)
|
||||
else:
|
||||
self.lastRewards.append(world.trailMix[self.x, self.y - 1] + world.hunter_grass[self.x, self.y - 1] * grass_factor + distReward)
|
||||
else:
|
||||
self.lastRewards.append(0)
|
||||
if self.down in directions:
|
||||
sub = self.getClosestSubject(world, self.x, self.y + 1)
|
||||
dist = self.viewD
|
||||
if sub is not None:
|
||||
dist = np.sqrt(np.square(self.x - sub.x) + np.square(self.y + 1 - sub.y))
|
||||
distReward = self.viewD - dist
|
||||
if down_kill:
|
||||
self.lastRewards.append(10 + world.trailMix[self.x, self.y + 1] + world.hunter_grass[self.x, self.y + 1] * grass_factor + distReward)
|
||||
else:
|
||||
self.lastRewards.append(world.trailMix[self.x, self.y + 1] + world.hunter_grass[self.x, self.y + 1] * grass_factor + distReward)
|
||||
else:
|
||||
self.lastRewards.append(0)
|
||||
assert len(self.lastRewards) == 4, 'Last Rewards not filled correctly!'
|
||||
|
||||
world.subjectDict[(self.x, self.y)].remove(self)
|
||||
self.x += action[0]
|
||||
self.y += action[1]
|
||||
self.lastReward += world.trailMix[self.x, self.y]
|
||||
world.subjectDict[(self.x, self.y)].append(self)
|
||||
self.lastReward += (world.hunter_grass[self.x, self.y] * 0.1)
|
||||
world.hunter_grass[self.x, self.y] = 0
|
||||
|
||||
sub = self.getClosestSubject(world, self.x, self.y)
|
||||
dist = self.viewD
|
||||
if sub is not None:
|
||||
dist = np.sqrt(np.square(self.x - sub.x) + np.square(self.y - sub.y))
|
||||
distReward = self.viewD - dist
|
||||
|
||||
self.lastReward += distReward
|
|
@ -1,37 +0,0 @@
|
|||
import tensorflow as tf
|
||||
|
||||
|
||||
def loss(nextState, actions):
|
||||
# return tf.reduce_sum(tf.square(nextState[:, 2:, 0] * (0.5 * (nextState[:, 0] + 0.25 * nextState[:, 1] - actions))), axis=1)
|
||||
return tf.reduce_mean(tf.square(nextState[:, 0] + 0.25 * nextState[:, 1] - tf.reduce_sum(
|
||||
nextState[:, 2:6, 0] * (actions[:, :4] + actions[:, 4:]), axis=1))) + tf.reduce_mean(
|
||||
tf.reduce_sum(tf.square(nextState[:, 6:, 0] - actions[:, :4]), axis=1), axis=0)
|
||||
|
||||
|
||||
def loss2(nextState, actions):
|
||||
# return tf.reduce_sum(tf.square(nextState[:, 2:, 0] * (0.5 * (nextState[:, 0] + 0.25 * nextState[:, 1] - actions))), axis=1)
|
||||
|
||||
# return 0.1 * tf.reduce_mean(tf.square(0.75 * nextState[:, 1] - tf.reduce_sum(nextState[:, 2:6, 0] * (actions[:, 4:] + actions[:, :4]),axis=1))) + 0.9 * tf.reduce_mean(tf.reduce_sum(tf.square(nextState[:, 6:, 0] - actions[:, :4]), axis=1), axis=0)
|
||||
|
||||
# return 0.0 * tf.reduce_mean(tf.square(0.75 * nextState[:, 1] - tf.reduce_sum(nextState[:, 2:6, 0] * (actions[:, :4]),axis=1))) + 1.0 * tf.reduce_mean(tf.reduce_sum(tf.square(nextState[:, 6:, 0] - actions[:, :4]), axis=1), axis=0)
|
||||
|
||||
return tf.reduce_mean(
|
||||
tf.reduce_max(nextState[:, 2:6, 0] * tf.square((nextState[:, 6:, 0] - (actions[:, :4] + actions[:, 4:]))),
|
||||
axis=1), axis=0)
|
||||
|
||||
# action = nextState[:, 3] * 1 + nextState[:, 4] * 2 + nextState[:, 5] * 3
|
||||
# action = tf.cast(action, tf.int32)
|
||||
# action = tf.reshape(action, (-1,))
|
||||
#
|
||||
# # test = actions[:, action[:]]
|
||||
#
|
||||
# test1 = tf.slice(actions[:, :4], action, (-1, 1))
|
||||
# test2 = tf.slice(actions[:, 4:], action, (-1, 1))
|
||||
#
|
||||
# return 1.0 * tf.reduce_mean(tf.reduce_sum(tf.square((0.1 * nextState[:, 1] + nextState[:, 6:, 0]) - (test1 + test2)), axis=1)) + 0.0 * tf.reduce_mean(tf.reduce_sum(tf.square(nextState[:, 6:, 0] - actions[:, :4]), axis=1), axis=0)
|
||||
# return 1.0 * tf.reduce_mean(tf.reduce_sum(tf.square((0.1 * nextState[:, 1] + nextState[:, 6:, 0]) - (actions[:, :4] + actions[:, 4:])), axis=1)) + 0.0 * tf.reduce_mean(tf.reduce_sum(tf.square(nextState[:, 6:, 0] - actions[:, :4]), axis=1), axis=0)
|
||||
|
||||
|
||||
def loss3(target, pred):
|
||||
return tf.reduce_mean(0.5 * tf.square(0.1 * target[:, 0, 0] + target[:, 1, 0] - (pred[:, 0] + pred[:, 1]))
|
||||
+ 0.5 * tf.square(target[:, 1, 0] - pred[:, 0]), axis=0)
|
|
@ -1,29 +0,0 @@
|
|||
from FluidSim.FluidSimulator import FluidSimulator2D
|
||||
import numpy as np
|
||||
|
||||
|
||||
def test_stand_still():
|
||||
fs = FluidSimulator2D(50, 50)
|
||||
|
||||
fs.array.has_fluid[10, 10] = True
|
||||
|
||||
for i in range(100):
|
||||
fs.timestep(0)
|
||||
|
||||
assert fs.array.has_fluid[10, 10], "Fluid not on the same spot anymore"
|
||||
assert np.sum(fs.array.has_fluid * 1.0) == 1.0, "Fluid amount changed"
|
||||
|
||||
|
||||
def test_move_positive_x():
|
||||
fs = FluidSimulator2D(50, 50)
|
||||
|
||||
fs.array.has_fluid[10, 10] = True
|
||||
fs.array.u_x[10, 10] = 1.0
|
||||
fs.array.u_x[11, 10] = 1.0
|
||||
# fs.array.u_x[9, 10] = -1.0
|
||||
|
||||
for i in range(10):
|
||||
fs.timestep(0)
|
||||
assert np.sum(fs.array.has_fluid * 1.0) == 1.0, "Fluid amount changed"
|
||||
|
||||
assert fs.array.has_fluid[0, 10], "Fluid not on the right border"
|
|
@ -1,22 +0,0 @@
|
|||
from FluidSim.StaggeredArray import StaggeredArray2D
|
||||
|
||||
|
||||
def test_staggered_array_2D():
|
||||
sa = StaggeredArray2D(10, 10)
|
||||
|
||||
for x in range(11):
|
||||
for y in range(10):
|
||||
sa.u_x[x, y] = y
|
||||
|
||||
for x in range(10):
|
||||
for y in range(11):
|
||||
sa.u_y[x, y] = x
|
||||
|
||||
ux, uy = sa.get_velocity_arrays()
|
||||
|
||||
for x in range(10):
|
||||
for y in range(10):
|
||||
ux2, uy2 = sa.get_velocity(x, y)
|
||||
|
||||
assert ux[x, y] == ux2, 'value output should be consistent!'
|
||||
assert uy[x, y] == uy2, 'value output should be consistent!'
|
Loading…
Reference in a new issue