import matplotlib.pyplot as plt import numpy as np """ Create Your Own Lattice Boltzmann Simulation (With Python) Philip Mocz (2020) Princeton Univeristy, @PMocz Simulate flow past cylinder for an isothermal fluid """ def main(): """ Finite Volume simulation """ # Simulation parameters Nx = 400 # resolution x-dir Ny = 100 # resolution y-dir rho0 = 100 # average density tau = 0.6 # collision timescale Nt = 80000 # number of timesteps plotRealTime = True # switch on for plotting as the simulation goes along # Lattice speeds / weights NL = 9 idxs = np.arange(NL) cxs = np.array([0, 0, 1, 1, 1, 0, -1, -1, -1]) cys = np.array([0, 1, 1, 0, -1, -1, -1, 0, 1]) weights = np.array([4 / 9, 1 / 9, 1 / 36, 1 / 9, 1 / 36, 1 / 9, 1 / 36, 1 / 9, 1 / 36]) # sums to 1 # Initial Conditions F = np.ones((Ny, Nx, NL)) # * rho0 / NL has_fluid = np.ones((Ny, Nx), dtype=np.bool) has_fluid[int(Ny/2):, :] = False np.random.seed(42) F += 0.01 * np.random.randn(Ny, Nx, NL) X, Y = np.meshgrid(range(Nx), range(Ny)) F[:, :, 3] += 2 * (1 + 0.2 * np.cos(2 * np.pi * X / Nx * 4)) # F[:, :, 5] += 1 rho = np.sum(F, 2) for i in idxs: F[:, :, i] *= rho0 / rho # Cylinder boundary X, Y = np.meshgrid(range(Nx), range(Ny)) cylinder = (X - Nx / 4) ** 2 + (Y - Ny / 2) ** 2 < (Ny / 4) ** 2 inner_cylinder = (X - Nx / 4) ** 2 + (Y - Ny / 2) ** 2 < (Ny / 4 - 2) ** 2 F[cylinder] = 0 F[0, :] = 0 F[Ny - 1, :] = 0 # F[int(Ny/2):, :] = 0 has_fluid[cylinder] = False has_fluid[0, :] = False has_fluid[Ny - 1, :] = False # for i in idxs: # F[:, :, i] *= has_fluid # Prep figure fig = plt.figure(figsize=(4, 2), dpi=80) reflection_mapping = [0, 5, 6, 7, 8, 1, 2, 3, 4] # Simulation Main Loop for it in range(Nt): print(it) # Drift new_has_fluid = np.zeros((Ny, Nx)) F_sum = np.sum(F, 2) for i, cx, cy in zip(idxs, cxs, cys): F_part = F[:, :, i] / F_sum F_part[F_sum == 0] = 0 to_move = F_part * (has_fluid * 1.0) to_move = (np.roll(to_move, cx, axis=1)) to_move = (np.roll(to_move, cy, axis=0)) new_has_fluid += to_move F[:, :, i] = np.roll(F[:, :, i], cx, axis=1) F[:, :, i] = np.roll(F[:, :, i], cy, axis=0) # has_fluid = new_has_fluid > 0.5 # new_has_fluid[F_sum == 0] += has_fluid[F_sum == 0] * 1.0 # new_has_fluid[(np.abs(F_sum) < 0.000000001)] = 0 fluid_sum = np.sum(has_fluid * 1.0) has_fluid = (new_has_fluid / np.sum(new_has_fluid * 1.0)) * fluid_sum print('fluid_cells: %d' % np.sum(has_fluid * 1)) # for i in idxs: # F[:, :, i] *= has_fluid bndry = np.zeros((Ny, Nx), dtype=np.bool) bndry[0, :] = True bndry[Ny - 1, :] = True # bndry[:, 0] = True # bndry[:, Nx - 1] = True bndry = np.logical_or(bndry, cylinder) # bndry = np.logical_or(bndry, has_fluid < 0.5) # Set reflective boundaries bndryF = F[bndry, :] bndryF = bndryF[:, reflection_mapping] sum_f = np.sum(F) print('Sum of Forces: %f' % sum_f) # sum_f_cyl = np.sum(F[cylinder]) # print('Sum of Forces in cylinder: %f' % sum_f_cyl) # sum_f_inner_cyl = np.sum(F[inner_cylinder]) # print('Sum of Forces in inner cylinder: %f' % sum_f_inner_cyl) # if sum_f > 4000000.000000: # test = 1 # F[Ny - 1, :, 5] += 0.1 # F[0, :, 1] -= 0.1 # F[0, :, 5] += 0.1 # F[Ny - 1, :, 1] -= 0.1 # Calculate fluid variables rho = np.sum(F, 2) ux = np.sum(F * cxs, 2) / rho uy = np.sum(F * cys, 2) / rho ux[(np.abs(rho) < 0.000000001)] = 0 uy[(np.abs(rho) < 0.000000001)] = 0 # print('minimum rho: %f' % np.min(np.abs(rho))) # print('Maximum F: %f' % np.max(F)) # print('Minimum F: %f' % np.min(F)) # Apply Collision Feq = np.zeros(F.shape) for i, cx, cy, w in zip(idxs, cxs, cys, weights): Feq[:, :, i] = rho * w * ( 1 + 3 * (cx * ux + cy * uy) + 9 * (cx * ux + cy * uy) ** 2 / 2 - 3 * (ux ** 2 + uy ** 2) / 2) F += -(1.0 / tau) * (F - Feq) # Apply boundary F[bndry, :] = bndryF # plot in real time - color 1/2 particles blue, other half red if (plotRealTime and (it % 10) == 0) or (it == Nt - 1): plt.cla() ux[cylinder] = 0 uy[cylinder] = 0 vorticity = (np.roll(ux, -1, axis=0) - np.roll(ux, 1, axis=0)) - ( np.roll(uy, -1, axis=1) - np.roll(uy, 1, axis=1)) vorticity[cylinder] = np.nan # vorticity *= has_fluid cmap = plt.cm.bwr cmap.set_bad('black') # plt.imshow(vorticity, cmap='bwr') plt.imshow(has_fluid * 2.0 - 1.0, cmap='bwr') # plt.imshow(bndry * 2.0 - 1.0, cmap='bwr') plt.clim(-.1, .1) ax = plt.gca() ax.invert_yaxis() ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) ax.set_aspect('equal') plt.pause(0.001) # Save figure # plt.savefig('latticeboltzmann.png', dpi=240) plt.show() return 0 if __name__ == "__main__": main()