diff --git a/shaders/compiled/frag_rt_quad.spv b/shaders/compiled/frag_rt_quad.spv index 5523307..a738849 100644 Binary files a/shaders/compiled/frag_rt_quad.spv and b/shaders/compiled/frag_rt_quad.spv differ diff --git a/shaders/compiled/rt_compute_grow_one.spv b/shaders/compiled/rt_compute_grow_one.spv index 23863ab..ee4c26c 100644 Binary files a/shaders/compiled/rt_compute_grow_one.spv and b/shaders/compiled/rt_compute_grow_one.spv differ diff --git a/shaders/compiled/rt_compute_grow_three.spv b/shaders/compiled/rt_compute_grow_three.spv index 625eb4b..b3a00fd 100644 Binary files a/shaders/compiled/rt_compute_grow_three.spv and b/shaders/compiled/rt_compute_grow_three.spv differ diff --git a/shaders/compiled/rt_compute_grow_two.spv b/shaders/compiled/rt_compute_grow_two.spv index 5d56e66..08a3187 100644 Binary files a/shaders/compiled/rt_compute_grow_two.spv and b/shaders/compiled/rt_compute_grow_two.spv differ diff --git a/shaders/compiled/rt_compute_mempos.spv b/shaders/compiled/rt_compute_mempos.spv index 891a76f..e7775cd 100644 Binary files a/shaders/compiled/rt_compute_mempos.spv and b/shaders/compiled/rt_compute_mempos.spv differ diff --git a/shaders/compiled/rt_compute_rasterize.spv b/shaders/compiled/rt_compute_rasterize.spv index fc8e3b0..be99608 100644 Binary files a/shaders/compiled/rt_compute_rasterize.spv and b/shaders/compiled/rt_compute_rasterize.spv differ diff --git a/shaders/rt_compute_grow_one.comp b/shaders/rt_compute_grow_one.comp index 27e27eb..6fc2845 100644 --- a/shaders/rt_compute_grow_one.comp +++ b/shaders/rt_compute_grow_one.comp @@ -30,7 +30,7 @@ layout (local_size_x = 16, local_size_y = 1, local_size_z = 1) in; void main() { uint index = gl_GlobalInvocationID.x; uint output_offset = 0; - uint compound_start = 0; + uint compound_start = 1; // iterate over the compounds and find the work index inside of it while (index > compounds[compound_start] * compounds[compound_start]) { output_offset += compounds[compound_start] * compounds[compound_start] * compounds[compound_start]; diff --git a/shaders/rt_compute_grow_three.comp b/shaders/rt_compute_grow_three.comp index 2127584..652a4cf 100644 --- a/shaders/rt_compute_grow_three.comp +++ b/shaders/rt_compute_grow_three.comp @@ -32,9 +32,9 @@ layout(binding = 8) buffer SizeBuffer3D { layout (local_size_x = 16, local_size_y = 1, local_size_z = 1) in; void main() { - uint index = gl_GlobalInvocationID.x; + uint index = gl_GlobalInvocationID.x * 2 + 1; uint output_offset = 0; - uint compound_start = 0; + uint compound_start = 1; // iterate over the compounds and find the work index inside of it while (index > compounds[compound_start] * compounds[compound_start]) { output_offset += compounds[compound_start] * compounds[compound_start] * compounds[compound_start]; diff --git a/shaders/rt_compute_grow_two.comp b/shaders/rt_compute_grow_two.comp index 0631b0c..12acbb4 100644 --- a/shaders/rt_compute_grow_two.comp +++ b/shaders/rt_compute_grow_two.comp @@ -32,9 +32,9 @@ layout(binding = 8) readonly buffer SizeBuffer3D { layout (local_size_x = 16, local_size_y = 1, local_size_z = 1) in; void main() { - uint index = gl_GlobalInvocationID.x; + uint index = gl_GlobalInvocationID.x * 2 + 1; uint output_offset = 0; - uint compound_start = 0; + uint compound_start = 1; // iterate over the compounds and find the work index inside of it while (index > compounds[compound_start] * compounds[compound_start]) { output_offset += compounds[compound_start] * compounds[compound_start] * compounds[compound_start]; diff --git a/shaders/rt_compute_mempos.comp b/shaders/rt_compute_mempos.comp index 25c5a63..831a827 100644 --- a/shaders/rt_compute_mempos.comp +++ b/shaders/rt_compute_mempos.comp @@ -198,22 +198,28 @@ void add_cube(uint cube_num, float scale, vec3 pos, vec3 color) { } +uint cohort_index_from_pos(uint x, uint y, uint z, uint block_size, uint compound_size) { + uint steps = compound_size / block_size; + return (z / block_size) * (steps*steps) + (y / block_size) * steps + (x / block_size); +} + void main() { uint index = gl_GlobalInvocationID.x; uint output_offset = 1; uint input_offset = 0; - uint compound_start = 0; + uint compound_start = 1; uint nodes = num_nodes(compounds[compound_start]); // iterate over the compounds and find the work index inside of it while (index > nodes) { - output_offset += nodes * 9; input_offset += compounds[compound_start] * compounds[compound_start] * compounds[compound_start]; index -= nodes; compound_start = compounds[compound_start + 2]; nodes = num_nodes(compounds[compound_start]); } + output_offset = compounds[compound_start + 8]; + uint compound_grid_size = compounds[compound_start]; uint parent_start = 0; uint cohort_start = 0; @@ -230,21 +236,30 @@ void main() { size = size / 2; } - uint parent = parent_start + ((cohort_index - cohort_index % 8) / 8) * 9; - uint start = cohort_start + 9 * cohort_index; uint steps = compounds[compound_start] / size; float compound_scale = uintBitsToFloat(compounds[compound_start + 1]); vec3 mid_offset = vec3(compound_scale * 0.5, compound_scale * 0.5, compound_scale * 0.5); - uint x = (cohort_index % steps) * size; - uint y = (((cohort_index - (cohort_index % steps)) % (steps * steps)) / (steps)) * size; - uint z = (((cohort_index - (cohort_index % (steps * steps)))) / (steps * steps)) * size; + uint x_no_offset = (cohort_index % steps) * size; + uint y_no_offset = (((cohort_index - (cohort_index % steps)) % (steps * steps)) / (steps)) * size; + uint z_no_offset = (((cohort_index - (cohort_index % (steps * steps)))) / (steps * steps)) * size; + + uint parent_size = size * 2; + uint parent_steps = compounds[compound_start] / parent_size; + uint x_parent = uint(floor(float(x_no_offset) / float(parent_size))) * parent_size; + uint y_parent = uint(floor(float(y_no_offset) / float(parent_size))) * parent_size; + uint z_parent = uint(floor(float(z_no_offset) / float(parent_size))) * parent_size; + + uint parent = output_offset + parent_start + cohort_index_from_pos(x_parent, y_parent, z_parent, parent_size, compound_grid_size) * 9;; + if (size == compounds[compound_start]) { + parent = 0; + } // plus one size offset, since we want to place the nodes at the far end. This aligns with the iteration directions in the previous shaders - x = x + (size - 1); - y = y + (size - 1); - z = z + (size - 1); + uint x = x_no_offset + (size - 1); + uint y = y_no_offset + (size - 1); + uint z = z_no_offset + (size - 1); // sum of all elements with coordinates lower than x, y, z uint contained_entries = grid_size_in[input_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z]; @@ -283,19 +298,20 @@ void main() { } if (contained_entries > 0) { - out_memory[output_offset + cohort_start + cohort_index * 9 + 0] = parent * uint(size != 64); + out_memory[output_offset + cohort_start + cohort_index * 9 + 0] = parent; if (size > 2) { // add child node reference + uint child_size = size / 2; uint cohort_end = cohort_start + 9 * add_size; - out_memory[output_offset + cohort_start + cohort_index * 9 + 1] = cohort_end + cohort_index * 9 + 9 * 0; // xyz - out_memory[output_offset + cohort_start + cohort_index * 9 + 2] = cohort_end + cohort_index * 9 + 9 * 1; // Xyz - out_memory[output_offset + cohort_start + cohort_index * 9 + 3] = cohort_end + cohort_index * 9 + 9 * 2; // xYz - out_memory[output_offset + cohort_start + cohort_index * 9 + 4] = cohort_end + cohort_index * 9 + 9 * 3; // XYz - out_memory[output_offset + cohort_start + cohort_index * 9 + 5] = cohort_end + cohort_index * 9 + 9 * 4; // xyZ - out_memory[output_offset + cohort_start + cohort_index * 9 + 6] = cohort_end + cohort_index * 9 + 9 * 5; // XyZ - out_memory[output_offset + cohort_start + cohort_index * 9 + 7] = cohort_end + cohort_index * 9 + 9 * 6; // xYZ - out_memory[output_offset + cohort_start + cohort_index * 9 + 8] = cohort_end + cohort_index * 9 + 9 * 7; // XYZ + out_memory[output_offset + cohort_start + cohort_index * 9 + 1] = output_offset + cohort_end + cohort_index_from_pos(x_no_offset, y_no_offset, z_no_offset, child_size, compound_grid_size) * 9; // xyz + out_memory[output_offset + cohort_start + cohort_index * 9 + 2] = output_offset + cohort_end + cohort_index_from_pos(x_no_offset + child_size, y_no_offset, z_no_offset, child_size, compound_grid_size) * 9; // Xyz + out_memory[output_offset + cohort_start + cohort_index * 9 + 3] = output_offset + cohort_end + cohort_index_from_pos(x_no_offset, y_no_offset + child_size, z_no_offset, child_size, compound_grid_size) * 9; // xYz + out_memory[output_offset + cohort_start + cohort_index * 9 + 4] = output_offset + cohort_end + cohort_index_from_pos(x_no_offset + child_size, y_no_offset + child_size, z_no_offset, child_size, compound_grid_size) * 9; // XYz + out_memory[output_offset + cohort_start + cohort_index * 9 + 5] = output_offset + cohort_end + cohort_index_from_pos(x_no_offset, y_no_offset, z_no_offset + child_size, child_size, compound_grid_size) * 9; // xyZ + out_memory[output_offset + cohort_start + cohort_index * 9 + 6] = output_offset + cohort_end + cohort_index_from_pos(x_no_offset + child_size, y_no_offset, z_no_offset + child_size, child_size, compound_grid_size) * 9; // XyZ + out_memory[output_offset + cohort_start + cohort_index * 9 + 7] = output_offset + cohort_end + cohort_index_from_pos(x_no_offset, y_no_offset + child_size, z_no_offset + child_size, child_size, compound_grid_size) * 9; // xYZ + out_memory[output_offset + cohort_start + cohort_index * 9 + 8] = output_offset + cohort_end + cohort_index_from_pos(x_no_offset + child_size, y_no_offset + child_size, z_no_offset + child_size, child_size, compound_grid_size) * 9; // XYZ } else { // copy color values and add cubes to rendering diff --git a/shaders/rt_compute_rasterize.comp b/shaders/rt_compute_rasterize.comp index 67912b2..836a54c 100644 --- a/shaders/rt_compute_rasterize.comp +++ b/shaders/rt_compute_rasterize.comp @@ -9,7 +9,7 @@ layout(binding = 0) uniform UniformBufferObject { bool[16] use_geom_shader; } ubo; -layout(binding = 3) readonly buffer SceneInfoBuffer { +layout(binding = 3) readonly buffer CompoundBuffer { uint compounds[]; }; @@ -175,7 +175,7 @@ void add_cube(uint cube_num, float scale, vec3 pos, vec3 color) { void main() { uint index = gl_GlobalInvocationID.x; uint output_offset = 0; - uint compound_start = 0; + uint compound_start = 1; // iterate over the compounds and find the work index inside of it while (index > compounds[compound_start] * compounds[compound_start]) { output_offset += compounds[compound_start] * compounds[compound_start] * compounds[compound_start]; diff --git a/shaders/rt_quad.frag b/shaders/rt_quad.frag index 378ccc8..d43de76 100644 --- a/shaders/rt_quad.frag +++ b/shaders/rt_quad.frag @@ -24,13 +24,19 @@ layout(binding = 0) uniform UniformBufferObject { // 3 - diffuse raster size (float, needs to be decoded) // 4 - max recursive rays // 5 - diffuse rays per hit +// 6 - maximum number of compounds per light layout(binding = 2) readonly buffer SceneInfoBuffer{ uint infos[]; } scene_info; -layout(binding = 4) buffer SceneInfoBuffer2 { - uint infos[]; -} scene_info2; +layout(binding = 3) readonly buffer CompoundBuffer { + uint compounds[]; +}; + +layout(binding = 10) readonly buffer OctTreeMemory { + uint oct_tree_mem[]; +}; + uint max_num_lights = scene_info.infos[0]; uint max_iterations_per_light = scene_info.infos[1]; // diffuse raytracing using a quadratic raster of rays @@ -41,6 +47,7 @@ float pos_infinity = uintBitsToFloat(0x7F800000); // set limit for maximal iterations uint max_iterations = max_num_lights * max_iterations_per_light * raster_points; uint iteration_num = 0; +uint max_num_compounds = scene_info.infos[6]; uvec4 unpack_color(uint val) { // left most 8 bits first @@ -52,7 +59,7 @@ uvec4 unpack_color(uint val) { return uvec4(val4, val3, val2, val1); } -uint array_descr_offset = 6 + max_num_lights; +uint array_descr_offset = 6 + max_num_lights + max_num_compounds; uint color_array_offset = 24 + 1; uint sample_neighbor_from_scene_info(uint volume_start, uvec2 raster_pos, uint f) { @@ -204,6 +211,63 @@ vec3 reflect_vector(vec3 direction, uint facing) { return direction - 2.0 * dot(direction, normal) * normal; } +uvec3 parent_child_vec(uint child_size, uint child_index) { + if (child_index == 1) { + return uvec3(0, 0, 0); + } + if (child_index == 2) { + return uvec3(child_size, 0, 0); + } + if (child_index == 3) { + return uvec3(0, child_size, 0); + } + if (child_index == 4) { + return uvec3(child_size, child_size, 0); + } + if (child_index == 5) { + return uvec3(0, 0, child_size); + } + if (child_index == 6) { + return uvec3(child_size, 0, child_size); + } + if (child_index == 7) { + return uvec3(0, child_size, child_size); + } + if (child_index == 8) { + return uvec3(child_size, child_size, child_size); + } + return uvec3(0, 0, 0); +} + +uint next_oct_tree_child(vec3 mid_point, vec3 check_pos, bool child_open[8]) { + if (check_pos.x <= mid_point.x && check_pos.y <= mid_point.y && check_pos.z <= mid_point.z && child_open[0]) { + return 1; + } + if (check_pos.x >= mid_point.x && check_pos.y <= mid_point.y && check_pos.z <= mid_point.z && child_open[1]) { + return 2; + } + if (check_pos.x <= mid_point.x && check_pos.y >= mid_point.y && check_pos.z <= mid_point.z && child_open[2]) { + return 3; + } + if (check_pos.x >= mid_point.x && check_pos.y >= mid_point.y && check_pos.z <= mid_point.z && child_open[3]) { + return 4; + } + if (check_pos.x <= mid_point.x && check_pos.y <= mid_point.y && check_pos.z >= mid_point.z && child_open[4]) { + return 5; + } + if (check_pos.x >= mid_point.x && check_pos.y <= mid_point.y && check_pos.z >= mid_point.z && child_open[5]) { + return 6; + } + if (check_pos.x <= mid_point.x && check_pos.y >= mid_point.y && check_pos.z >= mid_point.z && child_open[6]) { + return 7; + } + if (check_pos.x >= mid_point.x && check_pos.y >= mid_point.y && check_pos.z >= mid_point.z && child_open[7]) { + return 8; + } + + return 0; // return to parent +} + struct Tracing { vec3 end_pos; uvec4 end_color; @@ -259,6 +323,210 @@ Tracing trace_ray(uint volume_start, vec3 starting_pos, vec3 start_direction, fl while (iteration_num < max_iterations) { iteration_num ++; + + uint compound_num = 0; + while (scene_info.infos[volume_index + 6 + max_num_lights + compound_num] != 0 && compound_num < max_num_compounds && iteration_num < max_iterations && !result.has_hit) { + //iteration_num ++; + uint compound_start = scene_info.infos[volume_index + 6 + max_num_lights + compound_num]; + uint oct_tree_index = compounds[compound_start + 8]; + uint compound_grid_size = compounds[compound_start]; + float compound_scale = uintBitsToFloat(compounds[compound_start + 1]); + vec3 compound_pos = vec3(uintBitsToFloat(compounds[compound_start + 5]), uintBitsToFloat(compounds[compound_start + 6]), uintBitsToFloat(compounds[compound_start + 7])); + // check if we hit the volume + float x_border = compound_pos.x + float((compound_grid_size) * uint(!x_pos)) * compound_scale; + float y_border = compound_pos.y + float((compound_grid_size) * uint(!y_pos)) * compound_scale; + float z_border = compound_pos.z + float((compound_grid_size) * uint(!z_pos)) * compound_scale; + + if (!x_null) { + x_factor = (x_border - pos.x) / direction.x; + } else { + x_factor = max_factor; + } + if (!y_null) { + y_factor = (y_border - pos.y) / direction.y; + } else { + y_factor = max_factor; + } + if (!z_null) { + z_factor = (z_border - pos.z) / direction.z; + } else { + z_factor = max_factor; + } + + vec3 intersection_pos = pos; + bool is_x_hit = false; + bool is_y_hit = false; + bool is_z_hit = false; + bool hit_inside = false; + if ((compound_pos.x <= intersection_pos.x && intersection_pos.x <= compound_pos.x + float(compound_grid_size) * compound_scale) && + (compound_pos.y <= intersection_pos.y && intersection_pos.y <= compound_pos.y + float(compound_grid_size) * compound_scale) && + (compound_pos.z <= intersection_pos.z && intersection_pos.z <= compound_pos.z + float(compound_grid_size) * compound_scale)){ + hit_inside = true; + } else { + vec3 intersection_pos_x = pos + x_factor * direction; + vec3 intersection_pos_y = pos + y_factor * direction; + vec3 intersection_pos_z = pos + z_factor * direction; + if ((compound_pos.x <= intersection_pos_x.x && intersection_pos_x.x <= compound_pos.x + float(compound_grid_size) * compound_scale) && + (compound_pos.y <= intersection_pos_x.y && intersection_pos_x.y <= compound_pos.y + float(compound_grid_size) * compound_scale) && + (compound_pos.z <= intersection_pos_x.z && intersection_pos_x.z <= compound_pos.z + float(compound_grid_size) * compound_scale) && x_factor > 0.0) { + hit_inside = true; + is_x_hit = true; + intersection_pos = intersection_pos_x; + } + + if ((compound_pos.x <= intersection_pos_y.x && intersection_pos_y.x <= compound_pos.x + float(compound_grid_size) * compound_scale) && + (compound_pos.y <= intersection_pos_y.y && intersection_pos_y.y <= compound_pos.y + float(compound_grid_size) * compound_scale) && + (compound_pos.z <= intersection_pos_y.z && intersection_pos_y.z <= compound_pos.z + float(compound_grid_size) * compound_scale) && y_factor > 0.0 && (y_factor < x_factor || !is_x_hit)) { + hit_inside = true; + is_y_hit = true; + intersection_pos = intersection_pos_y; + } + + if ((compound_pos.x <= intersection_pos_z.x && intersection_pos_z.x <= compound_pos.x + float(compound_grid_size) * compound_scale) && + (compound_pos.y <= intersection_pos_z.y && intersection_pos_z.y <= compound_pos.y + float(compound_grid_size) * compound_scale) && + (compound_pos.z <= intersection_pos_z.z && intersection_pos_z.z <= compound_pos.z + float(compound_grid_size) * compound_scale) && z_factor > 0.0 && (z_factor < x_factor || !is_x_hit) && (z_factor < y_factor || !is_y_hit)) { + hit_inside = true; + is_z_hit = true; + intersection_pos = intersection_pos_z; + } + } + + // check that either the hit is in range or we are inside of the compound from the start + if (hit_inside) { + vec3 oct_tree_pos = vec3(compound_pos); + uint current_size = compound_grid_size; + vec3 mid_point = oct_tree_pos + float(current_size / 2) * vec3(compound_scale, compound_scale, compound_scale); + bool children_open[8] = {true, true, true, true, true, true, true, true}; + uint oct_tree_address = oct_tree_index; + // iterate through the oct_tree + uint check_it = 0; + uint prev_child = 0; + uint prev_prev_child = 0; + + uvec3 grid_pos = uvec3(0, 0, 0); + uvec3 parent_pos = uvec3(0, 0, 0); + + bool has_moved = false; + while (!result.has_hit && check_it < 60) { + // failsafe to get out in case has_moved runs into an accuracy issue + check_it ++; + oct_tree_pos = vec3(grid_pos) * compound_scale + compound_pos; + mid_point = oct_tree_pos + (float(current_size / 2) * vec3(compound_scale, compound_scale, compound_scale)); + + uint child_index = next_oct_tree_child(mid_point, intersection_pos, children_open); + if (child_index == 0) { + // go up to parent + // if parent is 0 abort, as we have reached the root node again and try to exit it + if (oct_tree_mem[oct_tree_address] == 0) { + break; + } + for (int i=0; i < 8; i++) { + children_open[i] = true; + } + uint parent_index = oct_tree_mem[oct_tree_address]; + // check which child we came from + child_index = 1 * uint(oct_tree_address == oct_tree_mem[parent_index + 1]) + 2 * uint(oct_tree_address == oct_tree_mem[parent_index + 2]) + 3 * uint(oct_tree_address == oct_tree_mem[parent_index + 3]) + 4 * uint(oct_tree_address == oct_tree_mem[parent_index + 4]) + 5 * uint(oct_tree_address == oct_tree_mem[parent_index + 5]) + 6 * uint(oct_tree_address == oct_tree_mem[parent_index + 6]) + 7 * uint(oct_tree_address == oct_tree_mem[parent_index + 7]) + 8 * uint(oct_tree_address == oct_tree_mem[parent_index + 8]); + // mark as done to avoid reinvestigating, since intersection_pos is on its edge + children_open[child_index - 1] = false; + if (!has_moved) { + for (int i=0; i < child_index; i++) { + children_open[i] = false; + } + } + prev_prev_child = prev_child; + prev_child = oct_tree_address; + + uvec3 back_vec = parent_child_vec(current_size, child_index); + grid_pos -= parent_child_vec(current_size, child_index); + current_size *= 2; + oct_tree_address = parent_index; + // todo remove once parent is implemented + //break; + } else { + // go down into child + if (current_size == 2) { + // check block if hit break + if (oct_tree_mem[oct_tree_address + child_index] != 0) { + result.has_hit = true; + result.end_color = uvec4(255, 0, 0, 32); + break; + } + } else { + // check if the child has content, else skip to next child of current parent + uint x = oct_tree_mem[oct_tree_address + child_index]; + if (oct_tree_mem[x] != 0) { + // change base address and position to child + current_size /= 2; + oct_tree_address = x; + grid_pos += parent_child_vec(current_size, child_index); + for (int i=0; i < 8; i++) { + children_open[i] = true; + } + continue; + } + } + children_open[child_index - 1] = false; + + // we did not go deeper or had a hit, so intersection pos needs to be updated + // new intersection pos calc + vec3 offset = vec3(parent_child_vec(current_size / 2, child_index)) * compound_scale; + vec3 low = oct_tree_pos + offset; + float x_border = low.x + float((compound_scale * current_size / 2) * uint(x_pos)); + float y_border = low.y + float((compound_scale * current_size / 2) * uint(y_pos)); + float z_border = low.z + float((compound_scale * current_size / 2) * uint(z_pos)); + + if (!x_null) { + x_factor = (x_border - pos.x) / direction.x; + } else { + x_factor = max_factor; + } + if (!y_null) { + y_factor = (y_border - pos.y) / direction.y; + } else { + y_factor = max_factor; + } + if (!z_null) { + z_factor = (z_border - pos.z) / direction.z; + } else { + z_factor = max_factor; + } + float smallest_factor = min(min(x_factor, y_factor), z_factor); + + has_moved = length(intersection_pos - (pos + smallest_factor * direction)) > 0.00001; + //has_moved = intersection_pos != (pos + smallest_factor * direction); + intersection_pos = pos + smallest_factor * direction; + } + } + + uint hit_facing = uint(is_x_hit) * (2 + uint(x_pos)) + uint(is_y_hit) * (4 + uint(y_pos)) + uint(is_z_hit && !z_pos); + //result.has_hit = true; + if (!has_moved) { + //result.has_hit = true; + } + if (!((compound_pos.x <= intersection_pos.x && intersection_pos.x <= compound_pos.x + float(compound_grid_size) * compound_scale) && + (compound_pos.y <= intersection_pos.y && intersection_pos.y <= compound_pos.y + float(compound_grid_size) * compound_scale) && + (compound_pos.z <= intersection_pos.z && intersection_pos.z <= compound_pos.z + float(compound_grid_size) * compound_scale))) { + //result.has_hit = true; + } + + if (!((compound_pos.x <= oct_tree_pos.x && oct_tree_pos.x <= compound_pos.x + float(compound_grid_size) * compound_scale) && + (compound_pos.y <= oct_tree_pos.y && oct_tree_pos.y <= compound_pos.y + float(compound_grid_size) * compound_scale) && + (compound_pos.z <= oct_tree_pos.z && oct_tree_pos.z <= compound_pos.z + float(compound_grid_size) * compound_scale))) { + //result.has_hit = true; + } + result.end_pos = intersection_pos; + result.end_facing = hit_facing; + result.end_volume = volume_index; + result.end_direction = direction; + } + + compound_num += 1; + } + + if (result.has_hit) { + break; + } + float x_border = volume_pos_x + float((scene_info.infos[volume_index + 3]) * uint(x_pos)) * volume_scale - 0.5 * volume_scale; float y_border = volume_pos_y + float((scene_info.infos[volume_index + 4]) * uint(y_pos)) * volume_scale - 0.5 * volume_scale; float z_border = volume_pos_z + float((scene_info.infos[volume_index + 5]) * uint(z_pos)) * volume_scale - 0.5 * volume_scale; @@ -267,12 +535,18 @@ Tracing trace_ray(uint volume_start, vec3 starting_pos, vec3 start_direction, fl if (!x_null) { x_factor = (x_border - pos.x) / direction.x; + } else { + x_factor = max_factor; } if (!y_null) { y_factor = (y_border - pos.y) / direction.y; + } else { + y_factor = max_factor; } if (!z_null) { z_factor = (z_border - pos.z) / direction.z; + } else { + z_factor = max_factor; } if ((x_factor >= max_factor) && (y_factor >= max_factor) && (z_factor >= max_factor)) { @@ -515,6 +789,7 @@ void main() { float opacity = float(color_roughness.w) / 255.0; vec3 color_seen_through; if (t.has_hit) { + //color_seen_through = vec3(float(t.end_color.x) / 255.0, float(t.end_color.y) / 255.0, float(t.end_color.z) / 255.0); color_seen_through = diffuse_tracing(t.end_volume, t.end_raster, t.end_pos, t.end_facing) * orig_color_sample * t.color_mul; color_seen_through = add_reflection(t.end_direction, t.end_facing, t.end_volume, t.end_pos, t.end_color, color_seen_through); } @@ -525,6 +800,8 @@ void main() { color_direct = add_reflection(normalize(clamped_pos - ubo.camera_pos), facing, fragVolumeStart, clamped_pos, color_roughness, color_direct); color_sum = opacity * color_direct + (1.0 - opacity) * color_seen_through; + + //color_sum = color_seen_through; } else { color_sum = diffuse_tracing(fragVolumeStart, clamped_raster_pos, clamped_pos, facing); diff --git a/src/app_data.rs b/src/app_data.rs index bfacaf4..2bfad28 100644 --- a/src/app_data.rs +++ b/src/app_data.rs @@ -99,6 +99,7 @@ pub struct AppData { pub compute_task_oct_tree_nodes: u64, // values passed to shader pub num_lights_per_volume: u32, + pub num_compound_per_volume: u32, pub min_light_weight: f32, pub max_iterations_per_light: u32, pub diffuse_raster_steps: u32, diff --git a/src/buffer.rs b/src/buffer.rs index c2b7572..9326b71 100644 --- a/src/buffer.rs +++ b/src/buffer.rs @@ -212,7 +212,7 @@ pub unsafe fn create_descriptor_set_layout( .binding(3) .descriptor_type(vk::DescriptorType::STORAGE_BUFFER) .descriptor_count(1) - .stage_flags(vk::ShaderStageFlags::COMPUTE); + .stage_flags(vk::ShaderStageFlags::COMPUTE | vk::ShaderStageFlags::FRAGMENT); let storage_binding_compute_out_color = vk::DescriptorSetLayoutBinding::builder() .binding(4) diff --git a/src/command_buffer.rs b/src/command_buffer.rs index 7b6289b..ae41ae1 100644 --- a/src/command_buffer.rs +++ b/src/command_buffer.rs @@ -85,14 +85,6 @@ pub unsafe fn create_command_buffers(device: &Device, data: &mut app_data::AppDa .size(vk::WHOLE_SIZE as u64) .build(); - device.cmd_pipeline_barrier(*command_buffer, - vk::PipelineStageFlags::COMPUTE_SHADER, - vk::PipelineStageFlags::VERTEX_INPUT, - vk::DependencyFlags::DEVICE_GROUP, - &[] as &[vk::MemoryBarrier], - &[buffer_memory_barrier_index, buffer_memory_barrier_vertex], - &[] as &[vk::ImageMemoryBarrier]); - // compute storage barrier let buffer_memory_barrier_color = vk::BufferMemoryBarrier::builder() .buffer(data.compute_out_storage_buffers_color[i]) @@ -155,7 +147,7 @@ pub unsafe fn create_command_buffers(device: &Device, data: &mut app_data::AppDa &[data.descriptor_sets[i]], &[]); - device.cmd_dispatch(*command_buffer, (data.compute_task_one_size as f64 / 16.0).ceil() as u32, 1, 1); + device.cmd_dispatch(*command_buffer, ((data.compute_task_one_size / 2) as f64 / 16.0).ceil() as u32, 1, 1); let buffer_memory_barrier_in = vk::BufferMemoryBarrier::builder() .buffer(data.compute_out_storage_buffers_size_three[i]) @@ -191,7 +183,7 @@ pub unsafe fn create_command_buffers(device: &Device, data: &mut app_data::AppDa &[data.descriptor_sets[i]], &[]); - device.cmd_dispatch(*command_buffer, (data.compute_task_one_size as f64 / 16.0).ceil() as u32, 1, 1); + device.cmd_dispatch(*command_buffer, ((data.compute_task_one_size / 2) as f64 / 16.0).ceil() as u32, 1, 1); let buffer_memory_barrier_in = vk::BufferMemoryBarrier::builder() .buffer(data.compute_out_storage_buffers_size_two[i]) @@ -227,17 +219,10 @@ pub unsafe fn create_command_buffers(device: &Device, data: &mut app_data::AppDa &[data.descriptor_sets[i]], &[]); - device.cmd_dispatch(*command_buffer, data.compute_task_oct_tree_nodes as u32, 1, 1); - - let buffer_memory_barrier_in = vk::BufferMemoryBarrier::builder() - .buffer(data.compute_out_storage_buffers_size_three[i]) - .src_access_mask(vk::AccessFlags::SHADER_READ) - .dst_access_mask(vk::AccessFlags::SHADER_WRITE) - .size(vk::WHOLE_SIZE as u64) - .build(); + device.cmd_dispatch(*command_buffer, (data.compute_task_oct_tree_nodes as f64 / 16.0).ceil() as u32, 1, 1); let buffer_memory_barrier_out = vk::BufferMemoryBarrier::builder() - .buffer(data.compute_out_storage_buffers_size_two[i]) + .buffer(data.compute_out_storage_buffers_oct_tree[i]) .src_access_mask(vk::AccessFlags::SHADER_WRITE) .dst_access_mask(vk::AccessFlags::SHADER_READ) .size(vk::WHOLE_SIZE as u64) @@ -245,10 +230,18 @@ pub unsafe fn create_command_buffers(device: &Device, data: &mut app_data::AppDa device.cmd_pipeline_barrier(*command_buffer, vk::PipelineStageFlags::COMPUTE_SHADER, - vk::PipelineStageFlags::COMPUTE_SHADER, + vk::PipelineStageFlags::FRAGMENT_SHADER, vk::DependencyFlags::DEVICE_GROUP, &[] as &[vk::MemoryBarrier], - &[buffer_memory_barrier_in, buffer_memory_barrier_out], + &[buffer_memory_barrier_out], + &[] as &[vk::ImageMemoryBarrier]); + + device.cmd_pipeline_barrier(*command_buffer, + vk::PipelineStageFlags::COMPUTE_SHADER, + vk::PipelineStageFlags::VERTEX_INPUT, + vk::DependencyFlags::DEVICE_GROUP, + &[] as &[vk::MemoryBarrier], + &[buffer_memory_barrier_index, buffer_memory_barrier_vertex], &[] as &[vk::ImageMemoryBarrier]); } // start render pass diff --git a/src/main.rs b/src/main.rs index d5905b4..9c525e7 100644 --- a/src/main.rs +++ b/src/main.rs @@ -195,6 +195,7 @@ impl App { let mut data = app_data::AppData::default(); data.use_geometry_shader = false; data.num_lights_per_volume = 5; + data.num_compound_per_volume = 5; data.min_light_weight = 0.0001; data.max_iterations_per_light = 20; data.diffuse_raster_steps = 0; @@ -281,7 +282,7 @@ impl App { self.update_uniform_buffer(image_index)?; let time = self.appstart.elapsed().as_secs_f32() / 1.0; - self.scene_handler.point_lights[0].borrow_mut().set_pos(cgmath::vec3((10.0 + 64.0) as f32 + time.sin() * 2.0, (10.0 + 64.0) as f32 + time.cos() * 2.0, 11.0)); + //self.scene_handler.point_lights[0].borrow_mut().set_pos(cgmath::vec3((10.0 + 64.0) as f32 + time.sin() * 2.0, (10.0 + 64.0) as f32 + time.cos() * 2.0, 11.0)); self.synchronized = 0; if self.synchronized < MAX_FRAMES_IN_FLIGHT { diff --git a/src/scene/empty_volume.rs b/src/scene/empty_volume.rs index 36e3a1f..00ee843 100644 --- a/src/scene/empty_volume.rs +++ b/src/scene/empty_volume.rs @@ -13,6 +13,7 @@ use crate::scene::oct_tree::OctTree; use super::memorizable::Memorizable; use super::light::LightSource; use super::light::PointLight; +use super::volumetrics::ShapeComposition; use super::AppData; use super::LightsIter; use super::Scene; @@ -1063,10 +1064,10 @@ impl EmptyVolume { let mut out_index = vec![]; for index in 0..weighted_indices.len() { - out_index.push(weighted_indices[weighted_indices.len() - (index + 1)].1 as u32); if out_index.len() == light_number as usize { break; } + out_index.push(weighted_indices[weighted_indices.len() - (index + 1)].1 as u32); } while out_index.len() < light_number as usize { out_index.push(0); @@ -1074,6 +1075,31 @@ impl EmptyVolume { out_index } + pub fn select_compounds(&self, compounds: &Vec<Rc<RefCell<ShapeComposition>>>, compound_number: u32) -> Vec<u32> { + let mut weighted_indices = vec![]; + for compound in compounds { + let bbox_low = compound.borrow().bbox_low; + let bbox_high = compound.borrow().bbox_high; + let diag = bbox_high - bbox_low; + if (self.real_position.x < bbox_high.x || self.real_position.y < bbox_high.y || self.real_position.z < bbox_high.z) && (bbox_low.x < self.real_position.x + self.size_x as f32 || bbox_low.y < self.real_position.y + self.size_y as f32 || bbox_low.z < self.real_position.z + self.size_z as f32) { + let le = diag.dot(diag); + weighted_indices.push((le, compound.borrow().get_memory_start())); + } + } + weighted_indices.sort_by(|a, b| a.0.partial_cmp(&b.0).unwrap()); + let mut out_index = vec![]; + for index in 0..weighted_indices.len() { + if out_index.len() == compound_number as usize { + break; + } + out_index.push(weighted_indices[weighted_indices.len() - (index + 1)].1 as u32); + } + while out_index.len() < compound_number as usize { + out_index.push(0); + } + out_index + } + pub fn combine_results(first: &Rc<RefCell<OctTree<Cube>>>,first_neighbors: &Rc<OctTree<Rc<RefCell<EmptyVolume>>>>, second: &Rc<RefCell<OctTree<Cube>>>, second_neighbors: &Rc<OctTree<Rc<RefCell<EmptyVolume>>>>, facing: vertex::Facing) { let mut first_start; let mut second_start; @@ -1261,6 +1287,7 @@ impl Memorizable for EmptyVolume { mem_size += 12; //color/roughness buffer sizes, 2 values each mem_size += 12; //neighbor buffer sizes, 2 values each mem_size += 1; //scale of the volume, 1 float + mem_size += data.num_compound_per_volume; // compound references // this covers full color and roughness mem_size += (self.color_top.len() as u32).max(1); @@ -1296,12 +1323,20 @@ impl Memorizable for EmptyVolume { mem_index += 1; v[mem_index] = self.size_z as u32; mem_index += 1; - //Todo: insert lights + //insert lights let selected_lights = self.select_lights(scene.get_light_iter(), data.num_lights_per_volume, data.min_light_weight); for light in selected_lights { v[mem_index] = light; mem_index += 1; } + + // compound references + let selected_compounds = self.select_compounds(&scene.volumetrics, data.num_compound_per_volume); + for compound in selected_compounds { + v[mem_index] = compound; + mem_index += 1; + } + //color/roughness buffer sizes, 2 values each if self.color_top.len() > 1 { v[mem_index] = self.size_x as u32; diff --git a/src/scene/generators.rs b/src/scene/generators.rs index c628790..a1a4a89 100644 --- a/src/scene/generators.rs +++ b/src/scene/generators.rs @@ -57,7 +57,7 @@ pub fn generate_test_scene(scene: &mut Scene, data: &mut AppData) -> Result<(Poi let shade = (rng.gen_range(0..25) as f32) / 100.0; let cube = Cube { pos: vec3(10.0, 10.0, 10.0), - color: vec3(0.0, 0.0, 0.9), + color: vec3(0.9, 0.9, 0.9), tex_coord: vec2(0.0, 0.0), transparent: true, roughness: 32, @@ -66,7 +66,7 @@ pub fn generate_test_scene(scene: &mut Scene, data: &mut AppData) -> Result<(Poi let cube = Cube { pos: vec3(10.0, 10.0, 9.0), - color: vec3(0.0, 0.0, 0.9), + color: vec3(0.9, 0.9, 0.9), tex_coord: vec2(0.0, 0.0), transparent: true, roughness: 32, @@ -93,7 +93,7 @@ pub fn generate_test_scene(scene: &mut Scene, data: &mut AppData) -> Result<(Poi oct_tree2.set_cube(cube.clone()); scene.point_lights.push(Rc::new(RefCell::new(PointLight::init(vec3(11.0 + grid_size as f32, 11.0 + grid_size as f32, 11.0) * scale, vec3(2.0, 2.0, 2.0))))); - scene.point_lights.push(Rc::new(RefCell::new(PointLight::init(vec3(9.0 + grid_size as f32, 9.0 + grid_size as f32, 11.0) * scale, vec3(0.5, 0.5, 0.5))))); + //scene.point_lights.push(Rc::new(RefCell::new(PointLight::init(vec3(9.0 + grid_size as f32, 9.0 + grid_size as f32, 11.0) * scale, vec3(0.5, 0.5, 0.5))))); scene.directional_lights.push(Rc::new(RefCell::new(DirectionalLight::init(vec3(1.0, 1.0, -1.0), vec3(0.1, 0.1, 0.1))))); let cube = Cuboid { @@ -112,13 +112,16 @@ pub fn generate_test_scene(scene: &mut Scene, data: &mut AppData) -> Result<(Poi size: Vector3 {x: 0.5, y: 0.5, z: 0.5} * scale }; let index = scene.sized_vertices.len(); - cube.draw(&data.topology, index, scene); + //cube.draw(&data.topology, index, scene); let tree_ref_one = Rc::new(RefCell::new(oct_tree1.clone())); let tree_ref_two = Rc::new(RefCell::new(oct_tree2.clone())); scene.oct_trees = vec![vec![vec![tree_ref_two.clone(), tree_ref_two.clone(), tree_ref_two.clone()], vec![tree_ref_two.clone(), tree_ref_one.clone(), tree_ref_two.clone()], vec![tree_ref_two.clone(), tree_ref_two.clone(), tree_ref_two.clone()]], vec![vec![tree_ref_two.clone(), tree_ref_two.clone(), tree_ref_two.clone()], vec![tree_ref_two.clone(), tree_ref_one.clone(), tree_ref_two.clone()], vec![tree_ref_two.clone(), tree_ref_two.clone(), tree_ref_two.clone()]]]; + //scene.oct_trees = vec![vec![vec![tree_ref_two.clone(), tree_ref_two.clone(), tree_ref_two.clone()], vec![tree_ref_two.clone(), tree_ref_one.clone(), tree_ref_two.clone()], vec![tree_ref_two.clone(), tree_ref_two.clone(), tree_ref_two.clone()]]]; let mut comp = ShapeComposition::new(64); + //comp.included_shapes.push(Rc::new(RefCell::new(Rect::new(Vector3 { x: 5.0 + grid_size as f32, y: 5.0 + grid_size as f32, z: 10.0 }, Vector3 { x: 0.0, y: 0.0, z: 0.0 }, Vector3 { x: 5.0, y: 5.0, z: 5.0 },Vector3 { x: 0, y: 0, z: 255 }, 64, false)))); + comp.included_shapes.push(Rc::new(RefCell::new(Sphere::new(Vector3 { x: 5.0 + grid_size as f32, y: 5.0 + grid_size as f32, z: 10.0 }, Vector3 { x: 0.0, y: 0.0, z: 0.0 }, 2.0, Vector3 { x: 0, y: 255, z: 0 }, 64, false)))); comp.included_shapes.push(Rc::new(RefCell::new(Sphere::new(Vector3 { x: 5.0 + grid_size as f32, y: 5.0 + grid_size as f32, z: 10.0 }, Vector3 { x: 0.0, y: 0.0, z: 0.0 }, 2.5, Vector3 { x: 255, y: 0, z: 0 }, 64, false)))); comp.excluded_shapes.push(Rc::new(RefCell::new(Sphere::new(Vector3 { x: 5.0 + grid_size as f32, y: 5.0 + grid_size as f32, z: 11.5 }, Vector3 { x: 0.0, y: 0.0, z: 0.0 }, 1.5, Vector3 { x: 0, y: 255, z: 0 }, 64, false)))); diff --git a/src/scene/mod.rs b/src/scene/mod.rs index 924bed0..395271d 100644 --- a/src/scene/mod.rs +++ b/src/scene/mod.rs @@ -181,49 +181,25 @@ impl Scene { pub fn update_memory(&mut self, data: &mut AppData, reuse_memory: bool) { // reuse_memory controls whether a fresh data vector is created or the existing one is used if it is the right size - let mut memory_index = 6; + let mut memory_index = 7; // 0 - location for the maximum number of lights referenced per chunk (also will be the invalid memory allocation for pointing to a nonexistant neighbor) // 1 - location for the max iterations per light // 2 - diffuse raster samples (2*n + 1) * (2*n + 1) so as to always have at least the central fragment covered // 3 - diffuse raster size // 4 - max recursive rays // 5 - diffuse rays per hit + // 6 - maximum number of compounds per light for memorizable in &self.memorizables { memorizable.borrow_mut().set_memory_start(memory_index); memory_index += memorizable.borrow_mut().get_buffer_mem_size(data) as usize; } - //println!("Memory size is {} kB, max indes is {}", memory_index * 32 / 8 /1024 + 1, memory_index); - let mut volume_vec; - let needs_overwrite; - if !reuse_memory || memory_index != self.rt_memory.len() { - volume_vec = vec![data.num_lights_per_volume; memory_index]; - needs_overwrite = true; - } else { - needs_overwrite = false; - volume_vec = self.rt_memory.clone(); - } - volume_vec[1] = data.max_iterations_per_light; - volume_vec[2] = data.diffuse_raster_steps; - volume_vec[3] = u32::from_ne_bytes(data.diffuse_raster_size.to_ne_bytes()); - volume_vec[4] = data.max_recursive_rays; - volume_vec[5] = data.diffuse_rays_per_hit; - - for memorizable in &self.memorizables { - if needs_overwrite || memorizable.borrow().is_dirty() { - volume_vec = memorizable.borrow_mut().insert_into_memory(volume_vec, data, &self); - } - } - - self.rt_memory = volume_vec; - data.scene_rt_memory_size = (self.rt_memory.len() * 4) as u64; // size of the needed buffer size in bytes - - let mut data_len = 0; + let mut compound_data_len = 1; for compound in &self.volumetrics { - compound.borrow_mut().set_memory_start(data_len); - data_len += compound.borrow().get_compound_buffer_mem_size(data) as usize; + compound.borrow_mut().set_memory_start(compound_data_len); + compound_data_len += compound.borrow().get_compound_buffer_mem_size(data) as usize; } - let mut volumetrics_memory = vec![0; data_len]; + let mut volumetrics_memory = vec![compound_data_len as u32; compound_data_len]; let mut compute_task_one_size = 0; let mut compute_task_one_out_size = 0; @@ -238,13 +214,40 @@ impl Scene { compute_task_one_out_size += compound.borrow().size.pow(3) as usize; } + //println!("Memory size is {} kB, max indes is {}", memory_index * 32 / 8 /1024 + 1, memory_index); + let mut volume_vec; + let needs_overwrite; + if !reuse_memory || memory_index != self.rt_memory.len() { + volume_vec = vec![data.num_lights_per_volume; memory_index]; + needs_overwrite = true; + } else { + needs_overwrite = false; + volume_vec = self.rt_memory.clone(); + } + volume_vec[0] = data.num_lights_per_volume; + volume_vec[1] = data.max_iterations_per_light; + volume_vec[2] = data.diffuse_raster_steps; + volume_vec[3] = u32::from_ne_bytes(data.diffuse_raster_size.to_ne_bytes()); + volume_vec[4] = data.max_recursive_rays; + volume_vec[5] = data.diffuse_rays_per_hit; + volume_vec[6] = data.num_compound_per_volume; + + for memorizable in &self.memorizables { + if needs_overwrite || memorizable.borrow().is_dirty() { + volume_vec = memorizable.borrow_mut().insert_into_memory(volume_vec, data, &self); + } + } + + self.rt_memory = volume_vec; + data.scene_rt_memory_size = (self.rt_memory.len() * 4) as u64; // size of the needed buffer size in bytes + self.volumetrics_memory = volumetrics_memory; data.scene_rt_volumetric_size = (self.volumetrics_memory.len() * 4) as u64; // size of the needed buffer size in bytes data.compute_task_one_size = compute_task_one_size; data.compute_task_one_out_buffer_size = (compute_task_one_out_size * 4) as u64; data.compute_task_one_out_size = compute_task_one_out_size as u64; data.compute_task_oct_tree_size = target_index as u64; - data.compute_task_oct_tree_nodes = node_count as u64; + data.compute_task_oct_tree_nodes = (node_count) as u64; } pub unsafe fn destroy(&mut self, device: &vulkanalia::Device) { diff --git a/src/scene/volumetrics/mod.rs b/src/scene/volumetrics/mod.rs index 8797cc3..cf72f67 100644 --- a/src/scene/volumetrics/mod.rs +++ b/src/scene/volumetrics/mod.rs @@ -37,11 +37,13 @@ pub struct ShapeComposition { pub included_shapes: Vec<Rc<RefCell<dyn Volumetrics>>>, pub excluded_shapes: Vec<Rc<RefCell<dyn Volumetrics>>>, dirty: bool, + pub bbox_low: Vector3<f32>, + pub bbox_high: Vector3<f32>, } impl ShapeComposition { pub fn new(size: u32) -> Self { - Self { memory_start: 0, target_memory_start: 0, prev_memory_size: 0, size: size, included_shapes: vec![], excluded_shapes: vec![], dirty: true } + Self { memory_start: 0, target_memory_start: 0, prev_memory_size: 0, size: size, included_shapes: vec![], excluded_shapes: vec![], dirty: true, bbox_low: Vector3 { x: 0.0, y: 0.0, z: 0.0 }, bbox_high: Vector3 { x: 0.0, y: 0.0, z: 0.0 } } } } @@ -61,7 +63,7 @@ impl CompoundMemorizable for ShapeComposition { impl Memorizable for ShapeComposition { fn get_buffer_mem_size(&self, data: &AppData) -> u32 { - //size, scale, memory_end, num_included, num_excluded, pos, wrapping address, included_address, excluded_address + //size, scale, memory_end, num_included, num_excluded, pos, target address, included_address, excluded_address 1 + 1 + 1 + 1 + 1 + 3 + 1 + self.included_shapes.len() as u32 + self.excluded_shapes.len() as u32 } @@ -118,6 +120,8 @@ impl Memorizable for ShapeComposition { } let bbox_high_pos_ind = bbox_high - bbox_low; + self.bbox_low = bbox_low; + self.bbox_high = bbox_high; let scale = bbox_high_pos_ind.x.max(bbox_high_pos_ind.y.max(bbox_high_pos_ind.z)) / (self.size as f32); v[self.memory_start + 1] = u32::from_ne_bytes(scale.to_ne_bytes()); @@ -127,7 +131,7 @@ impl Memorizable for ShapeComposition { v[self.memory_start + 5] = u32::from_ne_bytes(bbox_low.x.to_ne_bytes()); v[self.memory_start + 6] = u32::from_ne_bytes(bbox_low.y.to_ne_bytes()); v[self.memory_start + 7] = u32::from_ne_bytes(bbox_low.z.to_ne_bytes()); - v[self.memory_start + 8] = 0; //TODO add wrapping reference + v[self.memory_start + 8] = self.target_memory_start as u32; self.prev_memory_size = self.get_compound_buffer_mem_size(data); self.dirty = false; @@ -153,7 +157,6 @@ impl ShapeComposition { add_size *= 8; size /= 2; } - nodes }