diff --git a/build.rs b/build.rs
index 3a366b4..4a669e3 100644
--- a/build.rs
+++ b/build.rs
@@ -2,6 +2,28 @@ use std::process::Command;
 use std::io::{self, Write};
 use std::path::Path;
 
+use std::fs::File;
+use std::io::{BufReader, BufRead, Error};
+
+fn insert_place_holders(path: &str) {
+    let input = File::open(path).unwrap();
+    let mut output = File::create(path.replace("_placeholder", "")).unwrap();
+    let buffered = BufReader::new(input);
+
+    for line in buffered.lines() {
+        let line_str = line.unwrap();
+        if line_str.contains("#include ") {
+            let replacer = File::open(format!("shaders/{}", line_str.clone().split_off(9))).expect(format!("could not find the lib file shaders/{}", line_str.clone().split_off(9)).as_str());
+            let replacement_buffered = BufReader::new(replacer);
+            for replacement_line in replacement_buffered.lines() {
+                write!(output, "{}\n", replacement_line.unwrap()).expect("could not write");
+            }
+        } else {
+            write!(output, "{}\n", line_str).expect("could not write");
+        }
+    }
+}
+
 fn main() {
     println!("cargo::rerun-if-changed=shaders/cube.frag");
     println!("cargo::rerun-if-changed=shaders/cube.geom");
@@ -12,13 +34,17 @@ fn main() {
     println!("cargo::rerun-if-changed=shaders/cuboid.vert");
 
     println!("cargo::rerun-if-changed=shaders/rt_quad.vert");
-    println!("cargo::rerun-if-changed=shaders/rt_quad.frag");
+    println!("cargo::rerun-if-changed=shaders/rt_lib.frag");
+    println!("cargo::rerun-if-changed=shaders/rt_quad_placeholder.frag");
 
     println!("cargo::rerun-if-changed=shaders/rt_compute_rasterize.comp");
     println!("cargo::rerun-if-changed=shaders/rt_compute_grow_one.comp");
     println!("cargo::rerun-if-changed=shaders/rt_compute_grow_two.comp");
     println!("cargo::rerun-if-changed=shaders/rt_compute_grow_three.comp");
-    println!("cargo::rerun-if-changed=shaders/rt_compute_combine.comp");
+    println!("cargo::rerun-if-changed=shaders/rt_compute_mempos.comp");
+
+    // replace placeholders
+    insert_place_holders("shaders/rt_quad_placeholder.frag");
 
     std::fs::remove_file("shaders/compiled/geo_cube.spv").unwrap_or(());
     std::fs::remove_file("shaders/compiled/frag_cube.spv").unwrap_or(());
@@ -32,7 +58,7 @@ fn main() {
     std::fs::remove_file("shaders/compiled/rt_compute_grow_one.spv").unwrap_or(());
     std::fs::remove_file("shaders/compiled/rt_compute_grow_two.spv").unwrap_or(());
     std::fs::remove_file("shaders/compiled/rt_compute_grow_three.spv").unwrap_or(());
-    std::fs::remove_file("shaders/compiled/rt_compute_combine.spv").unwrap_or(());
+    std::fs::remove_file("shaders/compiled/rt_compute_mempos.spv").unwrap_or(());
 
     if std::env::consts::OS == "windows" {
         let mut command = Command::new("./shaders/compile.bat");
diff --git a/shaders/compile.bat b/shaders/compile.bat
index bb4fe6a..7717e6c 100644
--- a/shaders/compile.bat
+++ b/shaders/compile.bat
@@ -13,4 +13,4 @@ C:/VulkanSDK/1.3.280.0/Bin/glslc.exe shaders/rt_compute_rasterize.comp -o shader
 C:/VulkanSDK/1.3.280.0/Bin/glslc.exe shaders/rt_compute_grow_one.comp -o shaders/compiled/rt_compute_grow_one.spv
 C:/VulkanSDK/1.3.280.0/Bin/glslc.exe shaders/rt_compute_grow_two.comp -o shaders/compiled/rt_compute_grow_two.spv
 C:/VulkanSDK/1.3.280.0/Bin/glslc.exe shaders/rt_compute_grow_three.comp -o shaders/compiled/rt_compute_grow_three.spv
-C:/VulkanSDK/1.3.280.0/Bin/glslc.exe shaders/rt_compute_combine.comp -o shaders/compiled/rt_compute_combine.spv
\ No newline at end of file
+C:/VulkanSDK/1.3.280.0/Bin/glslc.exe shaders/rt_compute_mempos.comp -o shaders/compiled/rt_compute_mempos.spv
\ No newline at end of file
diff --git a/shaders/compile.sh b/shaders/compile.sh
index 88be158..9507c17 100755
--- a/shaders/compile.sh
+++ b/shaders/compile.sh
@@ -14,4 +14,4 @@ glslc shaders/rt_compute_rasterize.comp -o shaders/compiled/rt_compute_rasterize
 glslc shaders/rt_compute_grow_one.comp -o shaders/compiled/rt_compute_grow_one.spv
 glslc shaders/rt_compute_grow_two.comp -o shaders/compiled/rt_compute_grow_two.spv
 glslc shaders/rt_compute_grow_three.comp -o shaders/compiled/rt_compute_grow_three.spv
-glslc shaders/rt_compute_combine.comp -o shaders/compiled/rt_compute_combine.spv
\ No newline at end of file
+glslc shaders/rt_compute_mempos.comp -o shaders/compiled/rt_compute_mempos.spv
\ No newline at end of file
diff --git a/shaders/compiled/frag_rt_quad.spv b/shaders/compiled/frag_rt_quad.spv
index 5523307..ed483a0 100644
Binary files a/shaders/compiled/frag_rt_quad.spv and b/shaders/compiled/frag_rt_quad.spv differ
diff --git a/shaders/compiled/rt_compute_combine.spv b/shaders/compiled/rt_compute_combine.spv
deleted file mode 100644
index 61fd2ee..0000000
Binary files a/shaders/compiled/rt_compute_combine.spv and /dev/null differ
diff --git a/shaders/compiled/rt_compute_grow_one.spv b/shaders/compiled/rt_compute_grow_one.spv
index 82ea0be..ee4c26c 100644
Binary files a/shaders/compiled/rt_compute_grow_one.spv and b/shaders/compiled/rt_compute_grow_one.spv differ
diff --git a/shaders/compiled/rt_compute_grow_three.spv b/shaders/compiled/rt_compute_grow_three.spv
index 1a326ca..b3a00fd 100644
Binary files a/shaders/compiled/rt_compute_grow_three.spv and b/shaders/compiled/rt_compute_grow_three.spv differ
diff --git a/shaders/compiled/rt_compute_grow_two.spv b/shaders/compiled/rt_compute_grow_two.spv
index 136cf1c..08a3187 100644
Binary files a/shaders/compiled/rt_compute_grow_two.spv and b/shaders/compiled/rt_compute_grow_two.spv differ
diff --git a/shaders/compiled/rt_compute_mempos.spv b/shaders/compiled/rt_compute_mempos.spv
new file mode 100644
index 0000000..e7775cd
Binary files /dev/null and b/shaders/compiled/rt_compute_mempos.spv differ
diff --git a/shaders/compiled/rt_compute_rasterize.spv b/shaders/compiled/rt_compute_rasterize.spv
index 9ad3d50..be99608 100644
Binary files a/shaders/compiled/rt_compute_rasterize.spv and b/shaders/compiled/rt_compute_rasterize.spv differ
diff --git a/shaders/rt_compute_combine.comp b/shaders/rt_compute_combine.comp
deleted file mode 100644
index c70c19e..0000000
--- a/shaders/rt_compute_combine.comp
+++ /dev/null
@@ -1,51 +0,0 @@
-#version 450
-
-layout(binding = 0) uniform UniformBufferObject {
-    mat4 model;
-    mat4 geom_rot;
-    mat4 view;
-    mat4 proj;
-    vec3 camera_pos;
-    bool[16] use_geom_shader;
-} ubo;
-
-layout(binding = 3) readonly buffer CompoundBuffer {
-   uint compounds[];
-};
-
-layout(binding = 4) readonly buffer ColorBuffer {
-   uint grid_in[];
-};
-
-layout(binding = 9) readonly buffer TransparentBuffer {
-   bool transparent_grid[];
-};
-
-layout(binding = 8) buffer SizeBuffer3D {
-   uint grid_size_in[];
-};
-
-layout (local_size_x = 16, local_size_y = 1, local_size_z = 1) in;
-
-void main() {
-    uint index = gl_GlobalInvocationID.x;
-    uint output_offset = 0;
-    uint compound_start = 0;
-    // iterate over the compounds and find the work index inside of it
-    while (index > compounds[compound_start] * compounds[compound_start]) {
-        output_offset += compounds[compound_start] * compounds[compound_start] * compounds[compound_start] * 2;
-        index -= compounds[compound_start] * compounds[compound_start];
-        compound_start = compounds[compound_start + 2];
-    }
-    // grid pos in the task
-    uint compound_grid_size = compounds[compound_start];
-    float compound_scale = uintBitsToFloat(compounds[compound_start + 1]);
-    vec3 mid_offset = vec3(compound_scale * 0.5, compound_scale * 0.5, compound_scale * 0.5);
-    uint x = index % compound_grid_size;
-    uint y = ((index) % (compound_grid_size * compound_grid_size) - x) / (compound_grid_size);
-    uint z = (index - x - y * compound_grid_size) / (compound_grid_size * compound_grid_size);
-
-    uint size_x = grid_size_in[output_offset + (x * compound_grid_size * compound_grid_size + y * compound_grid_size + z) * 3];
-    uint size_y = grid_size_in[output_offset + (x * compound_grid_size * compound_grid_size + y * compound_grid_size + z) * 3 + 1];
-    uint size_z = grid_size_in[output_offset + (x * compound_grid_size * compound_grid_size + y * compound_grid_size + z) * 3 + 2];
-}
\ No newline at end of file
diff --git a/shaders/rt_compute_grow_one.comp b/shaders/rt_compute_grow_one.comp
index f4161f4..6fc2845 100644
--- a/shaders/rt_compute_grow_one.comp
+++ b/shaders/rt_compute_grow_one.comp
@@ -30,7 +30,7 @@ layout (local_size_x = 16, local_size_y = 1, local_size_z = 1) in;
 void main() {
     uint index = gl_GlobalInvocationID.x;
     uint output_offset = 0;
-    uint compound_start = 0;
+    uint compound_start = 1;
     // iterate over the compounds and find the work index inside of it
     while (index > compounds[compound_start] * compounds[compound_start]) {
         output_offset += compounds[compound_start] * compounds[compound_start] * compounds[compound_start];
@@ -43,40 +43,11 @@ void main() {
     vec3 mid_offset = vec3(compound_scale * 0.5, compound_scale * 0.5, compound_scale * 0.5);
     uint y = index % compound_grid_size;
     uint z = (index - y) / compound_grid_size;
-    vec3 compound_pos = vec3(uintBitsToFloat(compounds[compound_start + 5]), uintBitsToFloat(compounds[compound_start + 6]), uintBitsToFloat(compounds[compound_start + 7]));
     // iterate upwards along the x axis
-    bool seen_empty = false;
-    uint start = 0;
-    uint last_col = 0;
+    uint sum = 0;
     for (uint x=0; x < compound_grid_size; x++) {
         uint color_val = grid_in[output_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z];
-        bool transparent = transparent_grid[output_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z];
-        grid_out[output_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z] = 0;
-        // check if we need to stop a volume
-        if (color_val != 0 && !transparent) {
-            // check if we are in a volume right now
-            if (seen_empty) {
-                // close the current volume
-                grid_out[output_offset + start * compound_grid_size * compound_grid_size + y * compound_grid_size + z] = x - start;
-                seen_empty = false;
-                last_col = 0;
-            }
-        } else {
-            // check if transparency changed
-            if (seen_empty && transparent && last_col != color_val) {
-                // if we switch colors close the current volume and prepare for a new one
-                grid_out[output_offset + start * compound_grid_size * compound_grid_size + y * compound_grid_size + z] = x - start;
-                seen_empty = false;
-            }
-            // start a new volume if we are not in one right now
-            if (!seen_empty) {
-                seen_empty = true;
-                start = x;
-                last_col = color_val;
-            }
-        }
-    }
-    if (seen_empty) {
-        grid_out[output_offset + start * compound_grid_size * compound_grid_size + y * compound_grid_size + z] = compound_grid_size - start;
+        sum += uint(color_val != 0);
+        grid_out[output_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z] = sum;
     }
 }
\ No newline at end of file
diff --git a/shaders/rt_compute_grow_three.comp b/shaders/rt_compute_grow_three.comp
index 0460631..652a4cf 100644
--- a/shaders/rt_compute_grow_three.comp
+++ b/shaders/rt_compute_grow_three.comp
@@ -32,12 +32,12 @@ layout(binding = 8) buffer SizeBuffer3D {
 layout (local_size_x = 16, local_size_y = 1, local_size_z = 1) in;
 
 void main() {
-    uint index = gl_GlobalInvocationID.x;
+    uint index = gl_GlobalInvocationID.x * 2 + 1;
     uint output_offset = 0;
-    uint compound_start = 0;
+    uint compound_start = 1;
     // iterate over the compounds and find the work index inside of it
     while (index > compounds[compound_start] * compounds[compound_start]) {
-        output_offset += compounds[compound_start] * compounds[compound_start] * compounds[compound_start] * 2;
+        output_offset += compounds[compound_start] * compounds[compound_start] * compounds[compound_start];
         index -= compounds[compound_start] * compounds[compound_start];
         compound_start = compounds[compound_start + 2];
     }
@@ -47,55 +47,10 @@ void main() {
     vec3 mid_offset = vec3(compound_scale * 0.5, compound_scale * 0.5, compound_scale * 0.5);
     uint x = index % compound_grid_size;
     uint y = (index - x) / compound_grid_size;
-    vec3 compound_pos = vec3(uintBitsToFloat(compounds[compound_start + 5]), uintBitsToFloat(compounds[compound_start + 6]), uintBitsToFloat(compounds[compound_start + 7]));
-    // iterate upwards along the x axis
-    bool seen_empty = false;
-    uint start = 0;
-    uint start_x_size = 0;
-    uint start_y_size = 0;
-    uint last_col = 0;
+    // iterate upwards along the z axis
+    uint sum = 0;
     for (uint z=0; z < compound_grid_size; z++) {
-        uint color_val = grid_in[output_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z];
-        bool transparent = transparent_grid[output_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z];
-        uint current_x_size = grid_size_in[output_offset + (x * compound_grid_size * compound_grid_size + y * compound_grid_size + z) * 2];
-        uint current_y_size = grid_size_in[output_offset + (x * compound_grid_size * compound_grid_size + y * compound_grid_size + z) * 2 + 1];
-        
-        grid_out[output_offset + (x * compound_grid_size * compound_grid_size + y * compound_grid_size + z) * 3] = 0;
-        grid_out[output_offset + (x * compound_grid_size * compound_grid_size + y * compound_grid_size + z) * 3 + 1] = 0;
-        grid_out[output_offset + (x * compound_grid_size * compound_grid_size + y * compound_grid_size + z) * 3 + 2] = 0;
-        // check if we need to stop a volume
-        if (color_val != 0 && !transparent) {
-            // check if we are in a volume right now
-            if (seen_empty) {
-                // close the current volume
-                grid_out[output_offset + (x * compound_grid_size * compound_grid_size + y * compound_grid_size + start) * 3] = start_x_size;
-                grid_out[output_offset + (x * compound_grid_size * compound_grid_size + y * compound_grid_size + start) * 3 + 1] = start_y_size;
-                grid_out[output_offset + (x * compound_grid_size * compound_grid_size + y * compound_grid_size + start) * 3 + 2] = z - start;
-                seen_empty = false;
-                last_col = 0;
-            }
-        } else {
-            // check if transparency changed
-            if (seen_empty && ((transparent && last_col != color_val) || (start_x_size != current_x_size) || (start_y_size != current_y_size))) {
-                // if we switch colors or size close the current volume and prepare for a new one
-                grid_out[output_offset + (x * compound_grid_size * compound_grid_size + y * compound_grid_size + start) * 3] = start_x_size;
-                grid_out[output_offset + (x * compound_grid_size * compound_grid_size + y * compound_grid_size + start) * 3 + 1] = start_y_size;
-                grid_out[output_offset + (x * compound_grid_size * compound_grid_size + y * compound_grid_size + start) * 3 + 2] = z - start;
-                seen_empty = false;
-            }
-            // start a new volume if we are not in one right now
-            if (!seen_empty && current_x_size != 0 && current_y_size != 0) {
-                seen_empty = true;
-                start = z;
-                start_x_size = current_x_size;
-                start_y_size = current_y_size;
-                last_col = color_val;
-            }
-        }
-    }
-    if (seen_empty) {
-        grid_out[output_offset + (x * compound_grid_size * compound_grid_size + y * compound_grid_size + start) * 3] = start_x_size;
-        grid_out[output_offset + (x * compound_grid_size * compound_grid_size + y * compound_grid_size + start) * 3 + 1] = start_y_size;
-        grid_out[output_offset + (x * compound_grid_size * compound_grid_size + y * compound_grid_size + start) * 3 + 2] = compound_grid_size - start;
+        sum += grid_size_in[output_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z];
+        grid_out[output_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z] = sum;
     }
 }
\ No newline at end of file
diff --git a/shaders/rt_compute_grow_two.comp b/shaders/rt_compute_grow_two.comp
index c2ec2f6..12acbb4 100644
--- a/shaders/rt_compute_grow_two.comp
+++ b/shaders/rt_compute_grow_two.comp
@@ -32,12 +32,12 @@ layout(binding = 8) readonly buffer SizeBuffer3D {
 layout (local_size_x = 16, local_size_y = 1, local_size_z = 1) in;
 
 void main() {
-    uint index = gl_GlobalInvocationID.x;
+    uint index = gl_GlobalInvocationID.x * 2 + 1;
     uint output_offset = 0;
-    uint compound_start = 0;
+    uint compound_start = 1;
     // iterate over the compounds and find the work index inside of it
     while (index > compounds[compound_start] * compounds[compound_start]) {
-        output_offset += compounds[compound_start] * compounds[compound_start] * compounds[compound_start] * 2;
+        output_offset += compounds[compound_start] * compounds[compound_start] * compounds[compound_start];
         index -= compounds[compound_start] * compounds[compound_start];
         compound_start = compounds[compound_start + 2];
     }
@@ -47,48 +47,10 @@ void main() {
     vec3 mid_offset = vec3(compound_scale * 0.5, compound_scale * 0.5, compound_scale * 0.5);
     uint x = index % compound_grid_size;
     uint z = (index - x) / compound_grid_size;
-    vec3 compound_pos = vec3(uintBitsToFloat(compounds[compound_start + 5]), uintBitsToFloat(compounds[compound_start + 6]), uintBitsToFloat(compounds[compound_start + 7]));
-    // iterate upwards along the x axis
-    bool seen_empty = false;
-    uint start = 0;
-    uint start_x_size = 0;
-    uint last_col = 0;
+    // iterate upwards along the y axis
+    uint sum = 0;
     for (uint y=0; y < compound_grid_size; y++) {
-        uint color_val = grid_in[output_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z];
-        bool transparent = transparent_grid[output_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z];
-        uint current_x_size = grid_size_in[output_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z];
-        
-        grid_out[output_offset + (x * compound_grid_size * compound_grid_size + y * compound_grid_size + z) * 2] = 0;
-        grid_out[output_offset + (x * compound_grid_size * compound_grid_size + y * compound_grid_size + z) * 2 + 1] = 0;
-        // check if we need to stop a volume
-        if (color_val != 0 && !transparent) {
-            // check if we are in a volume right now
-            if (seen_empty) {
-                // close the current volume
-                grid_out[output_offset + (x * compound_grid_size * compound_grid_size + start * compound_grid_size + z) * 2] = start_x_size;
-                grid_out[output_offset + (x * compound_grid_size * compound_grid_size + start * compound_grid_size + z) * 2 + 1] = y - start;
-                seen_empty = false;
-                last_col = 0;
-            }
-        } else {
-            // check if transparency changed
-            if (seen_empty && ((transparent && last_col != color_val) || (start_x_size != current_x_size))) {
-                // if we switch colors or size close the current volume and prepare for a new one
-                grid_out[output_offset + (x * compound_grid_size * compound_grid_size + start * compound_grid_size + z) * 2] = start_x_size;
-                grid_out[output_offset + (x * compound_grid_size * compound_grid_size + start * compound_grid_size + z) * 2 + 1] = y - start;
-                seen_empty = false;
-            }
-            // start a new volume if we are not in one right now
-            if (!seen_empty && current_x_size != 0) {
-                seen_empty = true;
-                start = y;
-                start_x_size = current_x_size;
-                last_col = color_val;
-            }
-        }
-    }
-    if (seen_empty) {
-        grid_out[output_offset + (x * compound_grid_size * compound_grid_size + start * compound_grid_size + z) * 2] = start_x_size;
-        grid_out[output_offset + (x * compound_grid_size * compound_grid_size + start * compound_grid_size + z) * 2 + 1] = compound_grid_size - start;
+        sum += grid_size_in[output_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z];
+        grid_out[output_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z] = sum;
     }
 }
\ No newline at end of file
diff --git a/shaders/rt_compute_mempos.comp b/shaders/rt_compute_mempos.comp
new file mode 100644
index 0000000..831a827
--- /dev/null
+++ b/shaders/rt_compute_mempos.comp
@@ -0,0 +1,365 @@
+#version 450
+
+layout(binding = 0) uniform UniformBufferObject {
+    mat4 model;
+    mat4 geom_rot;
+    mat4 view;
+    mat4 proj;
+    vec3 camera_pos;
+    bool[16] use_geom_shader;
+} ubo;
+
+layout(binding = 3) readonly buffer CompoundBuffer {
+   uint compounds[];
+};
+
+layout(binding = 4) readonly buffer ColorBuffer {
+   uint grid_in[];
+};
+
+layout(binding = 9) readonly buffer TransparentBuffer {
+   bool transparent_grid[];
+};
+
+layout(binding = 8) readonly buffer SizeBuffer3D {
+   uint grid_size_in[];
+};
+
+layout(binding = 10) buffer OutMemory {
+   uint out_memory[];
+};
+
+layout(binding = 2) readonly buffer SceneInfoBuffer{
+     uint infos[]; 
+} scene_info;
+
+uint max_num_lights = scene_info.infos[0];
+
+layout (local_size_x = 16, local_size_y = 1, local_size_z = 1) in;
+
+uint num_nodes(uint size) {
+   uint nodes = 0;
+   uint add_size = 1;
+   while (size >= 2) {
+      nodes += add_size;
+      add_size = add_size * 8;
+      size = size / 2;
+   }
+
+   return nodes;
+}
+
+layout(binding = 5) buffer SizedVertices {
+   float vertices[];
+};
+
+layout(binding = 6) buffer Indices {
+   uint indices[];
+};
+
+vec3 unpack_color(uint val) {
+    // left most 8 bits first
+    uint val1 = (val >> 24);
+    uint val2 = (val << 8) >> 24;
+    uint val3 = (val << 16) >> 24;
+    uint val4 = (val << 24) >> 24;
+
+    return vec3(val4 / 255.0, val3 / 255.0, val2 / 255.0);
+}
+
+void add_cube(uint cube_num, float scale, vec3 pos, vec3 color) {
+    // add node info for the cube
+    //vertice 0
+    vertices[(cube_num * 8 + 0) * 11 + 0] = pos.x - 0.5 * scale;
+    vertices[(cube_num * 8 + 0) * 11 + 1] = pos.y + 0.5 * scale;
+    vertices[(cube_num * 8 + 0) * 11 + 2] = pos.z + 0.5 * scale;
+
+    vertices[(cube_num * 8 + 0) * 11 + 3] = color.x;
+    vertices[(cube_num * 8 + 0) * 11 + 4] = color.y;
+    vertices[(cube_num * 8 + 0) * 11 + 5] = color.z;
+
+    //vertice 1
+    vertices[(cube_num * 8 + 1) * 11 + 0] = pos.x + 0.5 * scale;
+    vertices[(cube_num * 8 + 1) * 11 + 1] = pos.y + 0.5 * scale;
+    vertices[(cube_num * 8 + 1) * 11 + 2] = pos.z + 0.5 * scale;
+
+    vertices[(cube_num * 8 + 1) * 11 + 3] = color.x;
+    vertices[(cube_num * 8 + 1) * 11 + 4] = color.y;
+    vertices[(cube_num * 8 + 1) * 11 + 5] = color.z;
+
+    //vertice 2
+    vertices[(cube_num * 8 + 2) * 11 + 0] = pos.x - 0.5 * scale;
+    vertices[(cube_num * 8 + 2) * 11 + 1] = pos.y - 0.5 * scale;
+    vertices[(cube_num * 8 + 2) * 11 + 2] = pos.z + 0.5 * scale;
+
+    vertices[(cube_num * 8 + 2) * 11 + 3] = color.x;
+    vertices[(cube_num * 8 + 2) * 11 + 4] = color.y;
+    vertices[(cube_num * 8 + 2) * 11 + 5] = color.z;
+
+    //vertice 3
+    vertices[(cube_num * 8 + 3) * 11 + 0] = pos.x + 0.5 * scale;
+    vertices[(cube_num * 8 + 3) * 11 + 1] = pos.y - 0.5 * scale;
+    vertices[(cube_num * 8 + 3) * 11 + 2] = pos.z + 0.5 * scale;
+
+    vertices[(cube_num * 8 + 3) * 11 + 3] = color.x;
+    vertices[(cube_num * 8 + 3) * 11 + 4] = color.y;
+    vertices[(cube_num * 8 + 3) * 11 + 5] = color.z;
+
+    //vertice 4
+    vertices[(cube_num * 8 + 4) * 11 + 0] = pos.x - 0.5 * scale;
+    vertices[(cube_num * 8 + 4) * 11 + 1] = pos.y + 0.5 * scale;
+    vertices[(cube_num * 8 + 4) * 11 + 2] = pos.z - 0.5 * scale;
+
+    vertices[(cube_num * 8 + 4) * 11 + 3] = color.x;
+    vertices[(cube_num * 8 + 4) * 11 + 4] = color.y;
+    vertices[(cube_num * 8 + 4) * 11 + 5] = color.z;
+
+    //vertice 5
+    vertices[(cube_num * 8 + 5) * 11 + 0] = pos.x + 0.5 * scale;
+    vertices[(cube_num * 8 + 5) * 11 + 1] = pos.y + 0.5 * scale;
+    vertices[(cube_num * 8 + 5) * 11 + 2] = pos.z - 0.5 * scale;
+
+    vertices[(cube_num * 8 + 5) * 11 + 3] = color.x;
+    vertices[(cube_num * 8 + 5) * 11 + 4] = color.y;
+    vertices[(cube_num * 8 + 5) * 11 + 5] = color.z;
+    
+    //vertice 6
+    vertices[(cube_num * 8 + 6) * 11 + 0] = pos.x - 0.5 * scale;
+    vertices[(cube_num * 8 + 6) * 11 + 1] = pos.y - 0.5 * scale;
+    vertices[(cube_num * 8 + 6) * 11 + 2] = pos.z - 0.5 * scale;
+
+    vertices[(cube_num * 8 + 6) * 11 + 3] = color.x;
+    vertices[(cube_num * 8 + 6) * 11 + 4] = color.y;
+    vertices[(cube_num * 8 + 6) * 11 + 5] = color.z;
+
+    //vertice 7
+    vertices[(cube_num * 8 + 7) * 11 + 0] = pos.x + 0.5 * scale;
+    vertices[(cube_num * 8 + 7) * 11 + 1] = pos.y - 0.5 * scale;
+    vertices[(cube_num * 8 + 7) * 11 + 2] = pos.z - 0.5 * scale;
+
+    vertices[(cube_num * 8 + 7) * 11 + 3] = color.x;
+    vertices[(cube_num * 8 + 7) * 11 + 4] = color.y;
+    vertices[(cube_num * 8 + 7) * 11 + 5] = color.z;
+
+    //add indices for the cube
+    //top
+    indices[cube_num * 36 + 0] = cube_num * 8 + 3;
+    indices[cube_num * 36 + 1] = cube_num * 8 + 0;
+    indices[cube_num * 36 + 2] = cube_num * 8 + 2;
+
+    indices[cube_num * 36 + 3] = cube_num * 8 + 3;
+    indices[cube_num * 36 + 4] = cube_num * 8 + 1;
+    indices[cube_num * 36 + 5] = cube_num * 8 + 0;
+
+    //bottom
+    indices[cube_num * 36 + 6] = cube_num * 8 + 6;
+    indices[cube_num * 36 + 7] = cube_num * 8 + 4;
+    indices[cube_num * 36 + 8] = cube_num * 8 + 7;
+
+    indices[cube_num * 36 + 9] = cube_num * 8 + 4;
+    indices[cube_num * 36 + 10] = cube_num * 8 + 5;
+    indices[cube_num * 36 + 11] = cube_num * 8 + 7;
+
+    //left
+    indices[cube_num * 36 + 12] = cube_num * 8 + 0;
+    indices[cube_num * 36 + 13] = cube_num * 8 + 4;
+    indices[cube_num * 36 + 14] = cube_num * 8 + 2;
+
+    indices[cube_num * 36 + 15] = cube_num * 8 + 6;
+    indices[cube_num * 36 + 16] = cube_num * 8 + 2;
+    indices[cube_num * 36 + 17] = cube_num * 8 + 4;
+
+    //right
+    indices[cube_num * 36 + 18] = cube_num * 8 + 1;
+    indices[cube_num * 36 + 19] = cube_num * 8 + 3;
+    indices[cube_num * 36 + 20] = cube_num * 8 + 5;
+
+    indices[cube_num * 36 + 21] = cube_num * 8 + 5;
+    indices[cube_num * 36 + 22] = cube_num * 8 + 3;
+    indices[cube_num * 36 + 23] = cube_num * 8 + 7;
+
+    //near
+    indices[cube_num * 36 + 24] = cube_num * 8 + 6;
+    indices[cube_num * 36 + 25] = cube_num * 8 + 3;
+    indices[cube_num * 36 + 26] = cube_num * 8 + 2;
+
+    indices[cube_num * 36 + 27] = cube_num * 8 + 3;
+    indices[cube_num * 36 + 28] = cube_num * 8 + 6;
+    indices[cube_num * 36 + 29] = cube_num * 8 + 7;
+
+    //far
+    indices[cube_num * 36 + 30] = cube_num * 8 + 0;
+    indices[cube_num * 36 + 31] = cube_num * 8 + 1;
+    indices[cube_num * 36 + 32] = cube_num * 8 + 4;
+
+    indices[cube_num * 36 + 33] = cube_num * 8 + 5;
+    indices[cube_num * 36 + 34] = cube_num * 8 + 4;
+    indices[cube_num * 36 + 35] = cube_num * 8 + 1;
+
+}
+
+uint cohort_index_from_pos(uint x, uint y, uint z, uint block_size, uint compound_size) {
+   uint steps = compound_size / block_size;
+   return (z / block_size) * (steps*steps) + (y / block_size) * steps + (x / block_size);
+}
+
+void main() {
+   uint index = gl_GlobalInvocationID.x;
+   uint output_offset = 1;
+   uint input_offset = 0;
+   uint compound_start = 1;
+
+   uint nodes = num_nodes(compounds[compound_start]);
+   // iterate over the compounds and find the work index inside of it
+   while (index > nodes) {
+      input_offset += compounds[compound_start] * compounds[compound_start] * compounds[compound_start];
+      index -= nodes;
+      compound_start = compounds[compound_start + 2];
+      nodes = num_nodes(compounds[compound_start]);
+   }
+
+   output_offset = compounds[compound_start + 8];
+
+   uint compound_grid_size = compounds[compound_start];
+   uint parent_start = 0;
+   uint cohort_start = 0;
+   uint cohort_index = index;
+   uint size = compounds[compound_start];
+   nodes = 0;
+   uint add_size = 1;
+   while (cohort_index >= add_size) {
+      nodes += add_size;
+      cohort_index -= add_size;
+      parent_start = cohort_start;
+      cohort_start = nodes * 9;
+      add_size *= 8;
+      size = size / 2;
+   }
+
+   uint steps = compounds[compound_start] / size;
+
+   float compound_scale = uintBitsToFloat(compounds[compound_start + 1]);
+   vec3 mid_offset = vec3(compound_scale * 0.5, compound_scale * 0.5, compound_scale * 0.5);
+   
+   uint x_no_offset = (cohort_index % steps) * size;
+   uint y_no_offset = (((cohort_index - (cohort_index % steps)) % (steps * steps)) / (steps)) * size;
+   uint z_no_offset = (((cohort_index - (cohort_index % (steps * steps)))) / (steps * steps)) * size;
+
+   uint parent_size = size * 2;
+   uint parent_steps = compounds[compound_start] / parent_size;
+   uint x_parent = uint(floor(float(x_no_offset) / float(parent_size))) * parent_size;
+   uint y_parent = uint(floor(float(y_no_offset) / float(parent_size))) * parent_size;
+   uint z_parent = uint(floor(float(z_no_offset) / float(parent_size))) * parent_size;
+
+   uint parent = output_offset + parent_start + cohort_index_from_pos(x_parent, y_parent, z_parent, parent_size, compound_grid_size) * 9;;
+   if (size == compounds[compound_start]) {
+      parent = 0;
+   }
+
+   // plus one size offset, since we want to place the nodes at the far end. This aligns with the iteration directions in the previous shaders
+   uint x = x_no_offset + (size - 1);
+   uint y = y_no_offset + (size - 1);
+   uint z = z_no_offset + (size - 1);
+
+   // sum of all elements with coordinates lower than x, y, z
+   uint contained_entries = grid_size_in[input_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z];
+   if (z > size) {
+      // remove contained from z neighbor
+      contained_entries = contained_entries - grid_size_in[input_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z - size];
+   }
+
+   if (y > size) {
+      if (z > size) {
+         // add back the section we will remove twice
+         contained_entries = contained_entries + int(grid_size_in[input_offset + x * compound_grid_size * compound_grid_size + (y - size) * compound_grid_size + z - size]);
+      }
+      // remove contained from y neighbor
+      contained_entries = contained_entries - int(grid_size_in[input_offset + x * compound_grid_size * compound_grid_size + (y - size) * compound_grid_size + z]);
+   }
+
+   if (x > size) {
+      if (z > size) {
+         // add the portion already removed through the z neighbor
+         contained_entries = contained_entries + grid_size_in[input_offset + (x - size) * compound_grid_size * compound_grid_size + y * compound_grid_size + z - size];
+      }
+
+      if (y > size) {
+         // add the portion already removed by the y neighbor
+         contained_entries = contained_entries + grid_size_in[input_offset + (x - size) * compound_grid_size * compound_grid_size + (y - size) * compound_grid_size + z];
+
+         if (z > size) {
+            // remove the portion already added through the z neighbor
+            contained_entries = contained_entries - grid_size_in[input_offset + (x - size) * compound_grid_size * compound_grid_size + (y - size) * compound_grid_size + z - size];
+         }
+      }
+
+      // remove contained from x neighbor
+      contained_entries = contained_entries - grid_size_in[input_offset + (x - size) * compound_grid_size * compound_grid_size + y * compound_grid_size + z];
+   }
+
+   if (contained_entries > 0) {
+      out_memory[output_offset + cohort_start + cohort_index * 9 + 0] = parent;
+
+      if (size > 2) {
+         // add child node reference
+         uint child_size = size / 2;
+         uint cohort_end = cohort_start + 9 * add_size;
+         out_memory[output_offset + cohort_start + cohort_index * 9 + 1] = output_offset + cohort_end + cohort_index_from_pos(x_no_offset,              y_no_offset,              z_no_offset,              child_size, compound_grid_size) * 9; // xyz
+         out_memory[output_offset + cohort_start + cohort_index * 9 + 2] = output_offset + cohort_end + cohort_index_from_pos(x_no_offset + child_size, y_no_offset,              z_no_offset,              child_size, compound_grid_size) * 9; // Xyz
+         out_memory[output_offset + cohort_start + cohort_index * 9 + 3] = output_offset + cohort_end + cohort_index_from_pos(x_no_offset,              y_no_offset + child_size, z_no_offset,              child_size, compound_grid_size) * 9; // xYz
+         out_memory[output_offset + cohort_start + cohort_index * 9 + 4] = output_offset + cohort_end + cohort_index_from_pos(x_no_offset + child_size, y_no_offset + child_size, z_no_offset,              child_size, compound_grid_size) * 9; // XYz
+         out_memory[output_offset + cohort_start + cohort_index * 9 + 5] = output_offset + cohort_end + cohort_index_from_pos(x_no_offset,              y_no_offset,              z_no_offset + child_size, child_size, compound_grid_size) * 9; // xyZ
+         out_memory[output_offset + cohort_start + cohort_index * 9 + 6] = output_offset + cohort_end + cohort_index_from_pos(x_no_offset + child_size, y_no_offset,              z_no_offset + child_size, child_size, compound_grid_size) * 9; // XyZ
+         out_memory[output_offset + cohort_start + cohort_index * 9 + 7] = output_offset + cohort_end + cohort_index_from_pos(x_no_offset,              y_no_offset + child_size, z_no_offset + child_size, child_size, compound_grid_size) * 9; // xYZ
+         out_memory[output_offset + cohort_start + cohort_index * 9 + 8] = output_offset + cohort_end + cohort_index_from_pos(x_no_offset + child_size, y_no_offset + child_size, z_no_offset + child_size, child_size, compound_grid_size) * 9; // XYZ
+
+      } else {
+         // copy color values and add cubes to rendering
+         out_memory[output_offset + cohort_start + cohort_index * 9 + 1] = grid_in[input_offset + (x - 1) * compound_grid_size * compound_grid_size + (y - 1) * compound_grid_size + (z - 1)]; // xyz
+         out_memory[output_offset + cohort_start + cohort_index * 9 + 2] = grid_in[input_offset + (x - 0) * compound_grid_size * compound_grid_size + (y - 1) * compound_grid_size + (z - 1)]; // Xyz
+         out_memory[output_offset + cohort_start + cohort_index * 9 + 3] = grid_in[input_offset + (x - 1) * compound_grid_size * compound_grid_size + (y - 0) * compound_grid_size + (z - 1)]; // xYz
+         out_memory[output_offset + cohort_start + cohort_index * 9 + 4] = grid_in[input_offset + (x - 0) * compound_grid_size * compound_grid_size + (y - 0) * compound_grid_size + (z - 1)]; // XYz
+         out_memory[output_offset + cohort_start + cohort_index * 9 + 5] = grid_in[input_offset + (x - 1) * compound_grid_size * compound_grid_size + (y - 1) * compound_grid_size + (z - 0)]; // xyZ
+         out_memory[output_offset + cohort_start + cohort_index * 9 + 6] = grid_in[input_offset + (x - 0) * compound_grid_size * compound_grid_size + (y - 1) * compound_grid_size + (z - 0)]; // XyZ
+         out_memory[output_offset + cohort_start + cohort_index * 9 + 7] = grid_in[input_offset + (x - 1) * compound_grid_size * compound_grid_size + (y - 0) * compound_grid_size + (z - 0)]; // xYZ
+         out_memory[output_offset + cohort_start + cohort_index * 9 + 8] = grid_in[input_offset + (x - 0) * compound_grid_size * compound_grid_size + (y - 0) * compound_grid_size + (z - 0)]; // XYZ
+      
+         vec3 compound_pos = vec3(uintBitsToFloat(compounds[compound_start + 5]), uintBitsToFloat(compounds[compound_start + 6]), uintBitsToFloat(compounds[compound_start + 7]));
+         vec3 check_pos = compound_pos + vec3(float(x) * compound_scale, float(y) * compound_scale, float(z) * compound_scale) + mid_offset;
+         if (out_memory[output_offset + cohort_start + cohort_index * 9 + 1] != 0) {
+            add_cube(input_offset + (z - 1) * compound_grid_size * compound_grid_size + (y - 1) * compound_grid_size + (x - 1), compound_scale, check_pos - vec3(1.0, 1.0, 1.0) * compound_scale, unpack_color(out_memory[output_offset + cohort_start + cohort_index * 9 + 1]));
+         }
+         if (out_memory[output_offset + cohort_start + cohort_index * 9 + 2] != 0) {
+            add_cube(input_offset + (z - 1) * compound_grid_size * compound_grid_size + (y - 1) * compound_grid_size + (x - 0), compound_scale, check_pos - vec3(0.0, 1.0, 1.0) * compound_scale, unpack_color(out_memory[output_offset + cohort_start + cohort_index * 9 + 2]));
+         }
+         if (out_memory[output_offset + cohort_start + cohort_index * 9 + 3] != 0) {
+            add_cube(input_offset + (z - 1) * compound_grid_size * compound_grid_size + (y - 0) * compound_grid_size + (x - 1), compound_scale, check_pos - vec3(1.0, 0.0, 1.0) * compound_scale, unpack_color(out_memory[output_offset + cohort_start + cohort_index * 9 + 3]));
+         }
+         if (out_memory[output_offset + cohort_start + cohort_index * 9 + 4] != 0) {
+            add_cube(input_offset + (z - 1) * compound_grid_size * compound_grid_size + (y - 0) * compound_grid_size + (x - 0), compound_scale, check_pos - vec3(0.0, 0.0, 1.0) * compound_scale, unpack_color(out_memory[output_offset + cohort_start + cohort_index * 9 + 4]));
+         }
+         if (out_memory[output_offset + cohort_start + cohort_index * 9 + 5] != 0) {
+            add_cube(input_offset + (z - 0) * compound_grid_size * compound_grid_size + (y - 1) * compound_grid_size + (x - 1), compound_scale, check_pos - vec3(1.0, 1.0, 0.0) * compound_scale, unpack_color(out_memory[output_offset + cohort_start + cohort_index * 9 + 5]));
+         }
+         if (out_memory[output_offset + cohort_start + cohort_index * 9 + 6] != 0) {
+            add_cube(input_offset + (z - 0) * compound_grid_size * compound_grid_size + (y - 1) * compound_grid_size + (x - 0), compound_scale, check_pos - vec3(0.0, 1.0, 0.0) * compound_scale, unpack_color(out_memory[output_offset + cohort_start + cohort_index * 9 + 6]));
+         }
+         if (out_memory[output_offset + cohort_start + cohort_index * 9 + 7] != 0) {
+            add_cube(input_offset + (z - 0) * compound_grid_size * compound_grid_size + (y - 0) * compound_grid_size + (x - 1), compound_scale, check_pos - vec3(1.0, 0.0, 0.0) * compound_scale, unpack_color(out_memory[output_offset + cohort_start + cohort_index * 9 + 7]));
+         }
+         if (out_memory[output_offset + cohort_start + cohort_index * 9 + 8] != 0) {
+            add_cube(input_offset + (z - 0) * compound_grid_size * compound_grid_size + (y - 0) * compound_grid_size + (x - 0), compound_scale, check_pos - vec3(0.0, 0.0, 0.0) * compound_scale, unpack_color(out_memory[output_offset + cohort_start + cohort_index * 9 + 8]));
+         }
+      }
+   } else {
+      out_memory[output_offset + cohort_start + cohort_index * 9 + 0] = 0;
+      out_memory[output_offset + cohort_start + cohort_index * 9 + 1] = 0;
+      out_memory[output_offset + cohort_start + cohort_index * 9 + 2] = 0;
+      out_memory[output_offset + cohort_start + cohort_index * 9 + 3] = 0;
+      out_memory[output_offset + cohort_start + cohort_index * 9 + 4] = 0;
+      out_memory[output_offset + cohort_start + cohort_index * 9 + 5] = 0;
+      out_memory[output_offset + cohort_start + cohort_index * 9 + 6] = 0;
+      out_memory[output_offset + cohort_start + cohort_index * 9 + 7] = 0;
+      out_memory[output_offset + cohort_start + cohort_index * 9 + 8] = 0;
+   }
+}
\ No newline at end of file
diff --git a/shaders/rt_compute_rasterize.comp b/shaders/rt_compute_rasterize.comp
index 8603805..836a54c 100644
--- a/shaders/rt_compute_rasterize.comp
+++ b/shaders/rt_compute_rasterize.comp
@@ -9,7 +9,7 @@ layout(binding = 0) uniform UniformBufferObject {
     bool[16] use_geom_shader;
 } ubo;
 
-layout(binding = 3) readonly buffer SceneInfoBuffer {
+layout(binding = 3) readonly buffer CompoundBuffer {
    uint compounds[];
 };
 
@@ -175,7 +175,7 @@ void add_cube(uint cube_num, float scale, vec3 pos, vec3 color) {
 void main() {
     uint index = gl_GlobalInvocationID.x;
     uint output_offset = 0;
-    uint compound_start = 0;
+    uint compound_start = 1;
     // iterate over the compounds and find the work index inside of it
     while (index > compounds[compound_start] * compounds[compound_start]) {
         output_offset += compounds[compound_start] * compounds[compound_start] * compounds[compound_start];
@@ -349,7 +349,7 @@ void main() {
         if (render) {
             grid[output_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z] = color_int;
             transparent_grid[output_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z] = transparent;
-            add_cube(output_offset + index * compound_grid_size + z, compound_scale, check_pos, color);
+            //add_cube(output_offset + index * compound_grid_size + z, compound_scale, check_pos, color);
         } else {
             grid[output_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z] = 0;
             transparent_grid[output_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z] = false;
diff --git a/shaders/rt_lib.frag b/shaders/rt_lib.frag
new file mode 100644
index 0000000..e2acfd1
--- /dev/null
+++ b/shaders/rt_lib.frag
@@ -0,0 +1,855 @@
+layout(binding = 0) uniform UniformBufferObject {
+    mat4 model;
+    mat4 geom_rot;
+    mat4 view;
+    mat4 proj;
+    vec3 camera_pos;
+    bool[16] use_geom_shader;
+} ubo;
+
+// 0 - location for the maximum number of lights referenced per chunk (also will be the invalid memory allocation for pointing to a nonexistant neighbor)
+// 1 - location for the max iterations per light
+// 2 - diffuse raster samples (2*n + 1) * (2*n + 1) so as to always have at least the central fragment covered
+// 3 - diffuse raster size (float, needs to be decoded)
+// 4 - max recursive rays
+// 5 - diffuse rays per hit
+// 6 - maximum number of compounds per light
+layout(binding = 2) readonly buffer SceneInfoBuffer{
+     uint infos[]; 
+} scene_info;
+
+layout(binding = 3) readonly buffer CompoundBuffer {
+   uint compounds[];
+};
+
+layout(binding = 10) readonly buffer OctTreeMemory {
+   uint oct_tree_mem[];
+};
+
+uint max_num_lights = scene_info.infos[0];
+uint max_iterations_per_light = scene_info.infos[1];
+// diffuse raytracing using a quadratic raster of rays
+int half_diffuse_raster_steps = int(scene_info.infos[2]);
+float raster_distance = uintBitsToFloat(scene_info.infos[3]);
+int raster_points = (2 * half_diffuse_raster_steps + 1) * (2 * half_diffuse_raster_steps + 1);
+float pos_infinity = uintBitsToFloat(0x7F800000);
+// set limit for maximal iterations
+uint max_iterations = max_num_lights * max_iterations_per_light * raster_points;
+uint iteration_num = 0;
+const uint absolute_max_compounds = 10;
+uint max_num_compounds = min(scene_info.infos[6], absolute_max_compounds);
+
+uvec4 unpack_color(uint val) {
+    // left most 8 bits first
+    uint val1 = (val >> 24);
+    uint val2 = (val << 8) >> 24;
+    uint val3 = (val << 16) >> 24;
+    uint val4 = (val << 24) >> 24;
+
+    return uvec4(val4, val3, val2, val1);
+}
+
+uint array_descr_offset = 6 + max_num_lights + max_num_compounds;
+uint color_array_offset = 24 + 1;
+
+uint sample_neighbor_from_scene_info(uint volume_start, uvec2 raster_pos, uint f) {
+    uint array_descr_start = volume_start + array_descr_offset;
+    uint color_array_start = array_descr_start + color_array_offset;
+
+    uint top_color_size_u = scene_info.infos[array_descr_start];
+    uint top_color_size_v = scene_info.infos[array_descr_start + 1];
+
+    uint bottom_color_size_u = scene_info.infos[array_descr_start + 2];
+    uint bottom_color_size_v = scene_info.infos[array_descr_start + 3];
+
+    uint left_color_size_u = scene_info.infos[array_descr_start + 4];
+    uint left_color_size_v = scene_info.infos[array_descr_start + 5];
+
+    uint right_color_size_u = scene_info.infos[array_descr_start + 6];
+    uint right_color_size_v = scene_info.infos[array_descr_start + 7];
+
+    uint front_color_size_u = scene_info.infos[array_descr_start + 8];
+    uint front_color_size_v = scene_info.infos[array_descr_start + 9];
+
+    uint back_color_size_u = scene_info.infos[array_descr_start + 10];
+    uint back_color_size_v = scene_info.infos[array_descr_start + 11];
+
+    uint top_neighbor_size_u = scene_info.infos[array_descr_start + 12];
+    uint top_neighbor_size_v = scene_info.infos[array_descr_start + 13];
+
+    uint bottom_neighbor_size_u = scene_info.infos[array_descr_start + 14];
+    uint bottom_neighbor_size_v = scene_info.infos[array_descr_start + 15];
+
+    uint left_neighbor_size_u = scene_info.infos[array_descr_start + 16];
+    uint left_neighbor_size_v = scene_info.infos[array_descr_start + 17];
+
+    uint right_neighbor_size_u = scene_info.infos[array_descr_start + 18];
+    uint right_neighbor_size_v = scene_info.infos[array_descr_start + 19];
+
+    uint front_neighbor_size_u = scene_info.infos[array_descr_start + 20];
+    uint front_neighbor_size_v = scene_info.infos[array_descr_start + 21];
+
+    uint back_neighbor_size_u = scene_info.infos[array_descr_start + 22];
+    uint back_neighbor_size_v = scene_info.infos[array_descr_start + 23];
+
+    uint top_color_size = top_color_size_u * top_color_size_v;
+    uint bottom_color_size = bottom_color_size_u * bottom_color_size_v;
+    uint left_color_size = left_color_size_u * left_color_size_v;
+    uint right_color_size = right_color_size_u * right_color_size_v;
+    uint front_color_size = front_color_size_u * front_color_size_v;
+    uint back_color_size = back_color_size_u * back_color_size_v;
+
+    uint color_array_end = color_array_start + top_color_size + bottom_color_size + left_color_size + right_color_size + front_color_size + back_color_size;
+
+    uint top_neighbor_size = top_neighbor_size_u * top_neighbor_size_v;
+    uint bottom_neighbor_size = bottom_neighbor_size_u * bottom_neighbor_size_v;
+    uint left_neighbor_size = left_neighbor_size_u * left_neighbor_size_v;
+    uint right_neighbor_size = right_neighbor_size_u * right_neighbor_size_v;
+    uint front_neighbor_size = front_neighbor_size_u * front_neighbor_size_v;
+    uint back_neighbor_size = back_neighbor_size_u * back_neighbor_size_v;
+
+    // maybe do an array solution for this as well
+    uint array_start = color_array_end + uint(f > 0) * top_neighbor_size + uint(f > 1) * bottom_neighbor_size + uint(f > 2) * left_neighbor_size + uint(f > 3) * right_neighbor_size + uint(f > 4) * front_neighbor_size;
+    uint us[6] = {top_neighbor_size_u, bottom_neighbor_size_u, left_neighbor_size_u, right_neighbor_size_u, front_neighbor_size_u, back_neighbor_size_u};
+    uint vs[6] = {top_neighbor_size_v, bottom_neighbor_size_v, left_neighbor_size_v, right_neighbor_size_v, front_neighbor_size_v, back_neighbor_size_v};
+    uint u_size = us[f];
+    uint v_size = vs[f];
+    uint value = scene_info.infos[array_start + raster_pos.x * v_size * uint(u_size > 1) + raster_pos.y * uint(v_size > 1)];
+    return value; 
+}
+
+uint sample_neighbor_from_scene_info(uint volume_start, vec2 raster_pos, uint f) {
+    return sample_neighbor_from_scene_info(volume_start, uvec2(uint(floor(raster_pos.x)), uint(floor(raster_pos.y))), f);
+}
+
+uvec4 sample_color_from_scene_info(uint volume_start, uvec2 raster_pos, uint f) {
+    uint array_descr_start = volume_start + array_descr_offset;
+    uint color_array_start = array_descr_start + color_array_offset;
+
+    uint top_color_size_u = scene_info.infos[array_descr_start];
+    uint top_color_size_v = scene_info.infos[array_descr_start + 1];
+
+    uint bottom_color_size_u = scene_info.infos[array_descr_start + 2];
+    uint bottom_color_size_v = scene_info.infos[array_descr_start + 3];
+
+    uint left_color_size_u = scene_info.infos[array_descr_start + 4];
+    uint left_color_size_v = scene_info.infos[array_descr_start + 5];
+
+    uint right_color_size_u = scene_info.infos[array_descr_start + 6];
+    uint right_color_size_v = scene_info.infos[array_descr_start + 7];
+
+    uint front_color_size_u = scene_info.infos[array_descr_start + 8];
+    uint front_color_size_v = scene_info.infos[array_descr_start + 9];
+
+    uint back_color_size_u = scene_info.infos[array_descr_start + 10];
+    uint back_color_size_v = scene_info.infos[array_descr_start + 11];
+
+    uint top_size = top_color_size_u * top_color_size_v;
+    uint bottom_size = bottom_color_size_u * bottom_color_size_v;
+    uint left_size = left_color_size_u * left_color_size_v;
+    uint right_size = right_color_size_u * right_color_size_v;
+    uint front_size = front_color_size_u * front_color_size_v;
+    uint back_size = back_color_size_u * back_color_size_v;
+
+    // maybe do an array solution for this as well
+    uint array_start = color_array_start + uint(f > 0) * top_size + uint(f > 1) * bottom_size + uint(f > 2) * left_size + uint(f > 3) * right_size + uint(f > 4) * front_size;
+    uint us[6] = {top_color_size_u, bottom_color_size_u, left_color_size_u, right_color_size_u, front_color_size_u, back_color_size_u};
+    uint vs[6] = {top_color_size_v, bottom_color_size_v, left_color_size_v, right_color_size_v, front_color_size_v, back_color_size_v};
+    uint u_size = us[f];
+    uint v_size = vs[f];
+    uint value = scene_info.infos[array_start + clamp(raster_pos.x, 0, u_size) * v_size * uint(u_size > 1) + clamp(raster_pos.y, 0, v_size) * uint(v_size > 1)];
+    return unpack_color(value); 
+}
+
+uvec4 sample_color_from_scene_info(uint volume_start, vec2 raster_pos, uint f) {
+    return sample_color_from_scene_info(volume_start, uvec2(uint(floor(raster_pos.x)), uint(floor(raster_pos.y))), f);
+}
+
+vec3 get_light_position(uint light_index) {
+    return vec3(uintBitsToFloat(scene_info.infos[light_index + 1]), uintBitsToFloat(scene_info.infos[light_index + 2]), uintBitsToFloat(scene_info.infos[light_index + 3]));
+}
+
+vec3 get_light_color(uint light_index) {
+    return vec3(float(scene_info.infos[light_index + 4]) / 255.0, float(scene_info.infos[light_index + 5]) / 255.0, float(scene_info.infos[light_index + 6]) / 255.0);
+}
+
+vec3 normal_for_facing(uint facing) {
+    if (facing == 0) {
+        return vec3(0.0, 0.0, -1.0);
+    }
+    if (facing == 1) {
+        return vec3(0.0, 0.0, 1.0);
+    }
+    if (facing == 2) {
+        return vec3(1.0, 0.0, 0.0);
+    }
+    if (facing == 3) {
+        return vec3(-1.0, 0.0, 0.0);
+    }
+    if (facing == 4) {
+        return vec3(0.0, 1.0, 0.0);
+    }
+    if (facing == 5) {
+        return vec3(0.0, -1.0, 0.0);
+    }
+
+    return vec3(0.0, 0.0, 0.0);
+}
+
+vec3 reflect_vector(vec3 direction, uint facing) {
+    vec3 normal = normal_for_facing(facing);
+    return direction - 2.0 * dot(direction, normal) * normal;
+}
+
+uvec3 parent_child_vec(uint child_size, uint child_index) {
+    if (child_index == 1) {
+        return uvec3(0, 0, 0);
+    }
+    if (child_index == 2) {
+        return uvec3(child_size, 0, 0);
+    }
+    if (child_index == 3) {
+        return uvec3(0, child_size, 0);
+    }
+    if (child_index == 4) {
+        return uvec3(child_size, child_size, 0);
+    }
+    if (child_index == 5) {
+        return uvec3(0, 0, child_size);
+    }
+    if (child_index == 6) {
+        return uvec3(child_size, 0, child_size);
+    }
+    if (child_index == 7) {
+        return uvec3(0, child_size, child_size);
+    }
+    if (child_index == 8) {
+        return uvec3(child_size, child_size, child_size);
+    }
+    return uvec3(0, 0, 0);
+}
+
+uint next_oct_tree_child(vec3 mid_point, vec3 check_pos, bool child_open[8]) {
+    if (check_pos.x <= mid_point.x && check_pos.y <= mid_point.y && check_pos.z <= mid_point.z && child_open[0]) {
+        return 1;
+    }
+    if (check_pos.x >= mid_point.x && check_pos.y <= mid_point.y && check_pos.z <= mid_point.z && child_open[1]) {
+        return 2;
+    }
+    if (check_pos.x <= mid_point.x && check_pos.y >= mid_point.y && check_pos.z <= mid_point.z && child_open[2]) {
+        return 3;
+    }
+    if (check_pos.x >= mid_point.x && check_pos.y >= mid_point.y && check_pos.z <= mid_point.z && child_open[3]) {
+        return 4;
+    }
+    if (check_pos.x <= mid_point.x && check_pos.y <= mid_point.y && check_pos.z >= mid_point.z && child_open[4]) {
+        return 5;
+    }
+    if (check_pos.x >= mid_point.x && check_pos.y <= mid_point.y && check_pos.z >= mid_point.z && child_open[5]) {
+        return 6;
+    }
+    if (check_pos.x <= mid_point.x && check_pos.y >= mid_point.y && check_pos.z >= mid_point.z && child_open[6]) {
+        return 7;
+    }
+    if (check_pos.x >= mid_point.x && check_pos.y >= mid_point.y && check_pos.z >= mid_point.z && child_open[7]) {
+        return 8;
+    }
+
+    return 0; // return to parent
+}
+
+struct Tracing {
+    vec3 end_pos;
+    uvec4 end_color;
+    uint end_volume;
+    uint end_facing;
+    float end_factor;
+    uint end_cycle;
+    bool has_hit;
+    vec3 color_mul;
+    uvec2 end_raster;
+
+    vec3 end_direction;
+    bool has_transparent_hit;
+};
+
+Tracing trace_ray(uint volume_start, vec3 starting_pos, vec3 start_direction, float start_max_factor, bool allow_reflect) {
+    vec3 direction = start_direction;
+    float max_factor = start_max_factor;
+    vec3 pos = starting_pos;
+    // setup volume info
+    uint volume_index = volume_start;
+    float volume_scale = uintBitsToFloat(scene_info.infos[volume_index + array_descr_offset + color_array_offset - 1]);
+    float volume_pos_x = uintBitsToFloat(scene_info.infos[volume_index + 0]); 
+    float volume_pos_y = uintBitsToFloat(scene_info.infos[volume_index + 1]); 
+    float volume_pos_z = uintBitsToFloat(scene_info.infos[volume_index + 2]); 
+
+    bool x_pos = direction.x > 0.0;
+    bool x_null = (direction.x == 0.0);
+    
+    bool y_pos = direction.y > 0.0;
+    bool y_null = (direction.y == 0.0);
+
+    bool z_pos = direction.z > 0.0;
+    bool z_null = (direction.z == 0.0);
+
+    // default is max factor, that way we avoid collision when going parallel to an axis. The other directions will score a hit
+    float x_factor = max_factor;
+    float y_factor = max_factor;
+    float z_factor = max_factor;
+
+    Tracing result;
+    result.has_hit = false;
+    result.has_transparent_hit = false;
+    result.color_mul = vec3(1.0, 1.0, 1.0);
+
+    // intermediate storage for transparent hit values
+    vec3 end_pos_transparent;
+    uvec4 end_color_transparent;
+    uint end_volume_transparent;
+    uint end_facing_transparent;
+    uvec2 end_raster_transparent;
+    vec3 color_mul_transparent;
+
+    uint next_volumetric_index = 0;
+    uint[absolute_max_compounds] done_volumetrics;
+    for (int i=0; i < max_num_compounds; i++) {
+        done_volumetrics[i] = 0;
+    }
+
+    uint[absolute_max_compounds] compound_starts;
+    float[absolute_max_compounds] hit_factors;
+    bool[absolute_max_compounds] is_x_hits;
+    bool[absolute_max_compounds] is_y_hits;
+    bool[absolute_max_compounds] is_z_hits;
+    bool[absolute_max_compounds] hits_inside;
+
+    while (iteration_num < max_iterations) {
+        iteration_num ++;
+
+        for (int i=0; i < max_num_compounds; i++) {
+            compound_starts[i] = 0;
+            hit_factors[i] = 0.0;
+            is_x_hits[i] = false;
+            is_y_hits[i] = false;
+            is_z_hits[i] = false;
+            hits_inside[i] = false;
+        }
+
+        uint compound_num = 0;
+        // go over the borders by this amount
+        float overstep = 0.00001 / length(direction);
+        uint hits = 0;
+        while (scene_info.infos[volume_index + 6 + max_num_lights + compound_num] != 0 && compound_num < max_num_compounds && iteration_num < max_iterations && !result.has_hit) {
+            uint compound_start = scene_info.infos[volume_index + 6 + max_num_lights + compound_num];
+            
+            bool already_checked = false;
+            for (int i=0; i < max_num_compounds; i++) {
+                if (compound_start == done_volumetrics[i]) {
+                    already_checked = true;
+                    break;
+                }
+            }            
+            if (already_checked) {
+                compound_num += 1;
+                continue;
+            }
+
+            //iteration_num ++;
+            uint oct_tree_index = compounds[compound_start + 8];
+            uint compound_grid_size = compounds[compound_start];
+            float compound_scale = uintBitsToFloat(compounds[compound_start + 1]);
+            vec3 compound_pos = vec3(uintBitsToFloat(compounds[compound_start + 5]), uintBitsToFloat(compounds[compound_start + 6]), uintBitsToFloat(compounds[compound_start + 7]));
+            // check if we hit the volume
+            float x_border = compound_pos.x + float((compound_grid_size) * uint(!x_pos)) * compound_scale;
+            float y_border = compound_pos.y + float((compound_grid_size) * uint(!y_pos)) * compound_scale;
+            float z_border = compound_pos.z + float((compound_grid_size) * uint(!z_pos)) * compound_scale;
+
+            if (!x_null) {
+                x_factor = (x_border - pos.x) / direction.x;
+            } else {
+                x_factor = max_factor;
+            }
+            if (!y_null) {
+                y_factor = (y_border - pos.y) / direction.y;
+            } else {
+                y_factor = max_factor;
+            }
+            if (!z_null) {
+                z_factor = (z_border - pos.z) / direction.z;
+            } else {
+                z_factor = max_factor;
+            }
+            x_factor += overstep;
+            y_factor += overstep;
+            z_factor += overstep;
+
+            vec3 intersection_pos = pos + 10.0 * overstep * direction;
+            bool is_x_hit = false;
+            bool is_y_hit = false;
+            bool is_z_hit = false;
+            bool hit_inside = false;
+            float hit_factor;
+            // check that either the hit is in range or we are inside of the compound from the start
+            if ((compound_pos.x <= intersection_pos.x && intersection_pos.x <= compound_pos.x + float(compound_grid_size) * compound_scale) && 
+                (compound_pos.y <= intersection_pos.y && intersection_pos.y <= compound_pos.y + float(compound_grid_size) * compound_scale) && 
+                (compound_pos.z <= intersection_pos.z && intersection_pos.z <= compound_pos.z + float(compound_grid_size) * compound_scale)){
+                hit_inside = true;
+                hit_factor = 10.0 * overstep;
+            } else {
+                vec3 intersection_pos_x = pos + x_factor * direction;
+                vec3 intersection_pos_y = pos + y_factor * direction;
+                vec3 intersection_pos_z = pos + z_factor * direction;
+                if ((compound_pos.x <= intersection_pos_x.x && intersection_pos_x.x <= compound_pos.x + float(compound_grid_size) * compound_scale) && 
+                    (compound_pos.y <= intersection_pos_x.y && intersection_pos_x.y <= compound_pos.y + float(compound_grid_size) * compound_scale) && 
+                    (compound_pos.z <= intersection_pos_x.z && intersection_pos_x.z <= compound_pos.z + float(compound_grid_size) * compound_scale) && x_factor > 0.0 && x_factor <= max_factor) {
+                    hit_inside = true;
+                    is_x_hit = true;
+                    intersection_pos = intersection_pos_x;
+                    hit_factor = x_factor;
+                }
+                    
+                if ((compound_pos.x <= intersection_pos_y.x && intersection_pos_y.x <= compound_pos.x + float(compound_grid_size) * compound_scale) && 
+                    (compound_pos.y <= intersection_pos_y.y && intersection_pos_y.y <= compound_pos.y + float(compound_grid_size) * compound_scale) && 
+                    (compound_pos.z <= intersection_pos_y.z && intersection_pos_y.z <= compound_pos.z + float(compound_grid_size) * compound_scale) && y_factor > 0.0 && y_factor <= max_factor && (y_factor < x_factor || !is_x_hit)) {
+                    hit_inside = true;
+                    is_y_hit = true;
+                    intersection_pos = intersection_pos_y;
+                    hit_factor = y_factor;
+                }
+                        
+                if ((compound_pos.x <= intersection_pos_z.x && intersection_pos_z.x <= compound_pos.x + float(compound_grid_size) * compound_scale) && 
+                    (compound_pos.y <= intersection_pos_z.y && intersection_pos_z.y <= compound_pos.y + float(compound_grid_size) * compound_scale) && 
+                    (compound_pos.z <= intersection_pos_z.z && intersection_pos_z.z <= compound_pos.z + float(compound_grid_size) * compound_scale) && z_factor > 0.0 && z_factor <= max_factor && (z_factor < x_factor || !is_x_hit) && (z_factor < y_factor || !is_y_hit)) {
+                    hit_inside = true;
+                    is_z_hit = true;
+                    intersection_pos = intersection_pos_z;
+                    hit_factor = z_factor;
+                }
+            }
+
+            compound_starts[hits] = compound_start;
+            hit_factors[hits] = hit_factor;
+            is_x_hits[hits] = is_x_hit;
+            is_y_hits[hits] = is_y_hit;
+            is_z_hits[hits] = is_z_hit;
+            hits_inside[hits] = hit_inside;
+            hits += 1 * uint(hit_inside);
+
+            done_volumetrics[next_volumetric_index] = compound_start;
+            next_volumetric_index = (next_volumetric_index + 1) % max_num_compounds;
+
+            compound_num += 1;
+        }
+
+        for (int i =0; i < hits; i++) {
+            if (result.has_hit) {
+                break;
+            }
+            // find encounters in order
+            float min_factor = max_factor;
+            uint min_index = 0;
+            for (int j = 0; j < hits; j++) {
+                if (hit_factors[j] < min_factor) {
+                    min_factor = hit_factors[j];
+                    min_index = j;
+                }
+            }
+            // set up the compound
+            uint compound_start = compound_starts[min_index];
+            bool is_x_hit = is_x_hits[min_index];
+            bool is_y_hit = is_y_hits[min_index];
+            bool is_z_hit = is_z_hits[min_index];
+            uint oct_tree_index = compounds[compound_start + 8];
+            uint compound_grid_size = compounds[compound_start];
+            float compound_scale = uintBitsToFloat(compounds[compound_start + 1]);
+            vec3 compound_pos = vec3(uintBitsToFloat(compounds[compound_start + 5]), uintBitsToFloat(compounds[compound_start + 6]), uintBitsToFloat(compounds[compound_start + 7]));
+            vec3 intersection_pos = pos + hit_factors[min_index] * direction;
+            // invalidate the min found
+            hit_factors[min_index] = max_factor;
+            
+            vec3 oct_tree_pos = vec3(compound_pos);
+            uint current_size = compound_grid_size;
+            vec3 mid_point = oct_tree_pos + float(current_size / 2) * vec3(compound_scale, compound_scale, compound_scale);
+            bool children_open[8] = {true, true, true, true, true, true, true, true};
+            uint oct_tree_address = oct_tree_index;
+            // iterate through the oct_tree
+            uint check_it = 0;
+            uint max_check_it = 60;
+            uint prev_child = 0;
+            uint prev_prev_child = 0;
+
+            uvec3 grid_pos = uvec3(0, 0, 0);
+            uvec3 parent_pos = uvec3(0, 0, 0);
+
+            bool has_moved = false;
+            while (!result.has_hit && check_it < max_check_it) {
+                // failsafe to get out in case has_moved runs into an accuracy issue
+                check_it ++;
+                oct_tree_pos = vec3(grid_pos) * compound_scale + compound_pos;
+                mid_point = oct_tree_pos + (float(current_size / 2) * vec3(compound_scale, compound_scale, compound_scale));
+
+                uint child_index = next_oct_tree_child(mid_point, intersection_pos, children_open);
+                if (child_index == 0) {
+                    // go up to parent
+                    // if parent is 0 abort, as we have reached the root node again and try to exit it
+                    if (oct_tree_mem[oct_tree_address] == 0) {
+                        break;
+                    }
+                    for (int i=0; i < 8; i++) {
+                        children_open[i] = true;
+                    }
+                    uint parent_index = oct_tree_mem[oct_tree_address];
+                    // check which child we came from
+                    child_index = 1 * uint(oct_tree_address == oct_tree_mem[parent_index + 1]) + 2 * uint(oct_tree_address == oct_tree_mem[parent_index + 2]) + 3 * uint(oct_tree_address == oct_tree_mem[parent_index + 3]) + 4 * uint(oct_tree_address == oct_tree_mem[parent_index + 4]) + 5 * uint(oct_tree_address == oct_tree_mem[parent_index + 5]) + 6 * uint(oct_tree_address == oct_tree_mem[parent_index + 6]) + 7 * uint(oct_tree_address == oct_tree_mem[parent_index + 7]) + 8 * uint(oct_tree_address == oct_tree_mem[parent_index + 8]);
+                    // mark as done to avoid reinvestigating, since intersection_pos is on its edge                        
+                    children_open[child_index - 1] = false;
+                    prev_prev_child = prev_child;
+                    prev_child = oct_tree_address;
+
+                    uvec3 back_vec = parent_child_vec(current_size, child_index);
+                    grid_pos -= parent_child_vec(current_size, child_index);
+                    current_size *= 2;
+                    oct_tree_address = parent_index;
+                } else {
+                    // go down into child
+                    if (current_size == 2) {
+                        // check block if hit break
+                        if (oct_tree_mem[oct_tree_address + child_index] != 0) {
+                            result.has_hit = true;
+                            result.end_color = unpack_color(oct_tree_mem[oct_tree_address + child_index]);
+                            break;
+                        }                            
+                    } else {
+                        // check if the child has content, else skip to next child of current parent
+                        uint x = oct_tree_mem[oct_tree_address + child_index];
+                        if (oct_tree_mem[x] != 0) {
+                            // change base address and position to child
+                            current_size /= 2;
+                            oct_tree_address = x;
+                            grid_pos += parent_child_vec(current_size, child_index);
+                            for (int i=0; i < 8; i++) {
+                                children_open[i] = true;
+                            }
+                            continue;
+                        }
+                    }
+                    children_open[child_index - 1] = false;
+                    
+                    // we did not go deeper or had a hit, so intersection pos needs to be updated
+                    // new intersection pos calc
+                    vec3 offset = vec3(parent_child_vec(current_size / 2, child_index)) * compound_scale;
+                    vec3 low = oct_tree_pos + offset;
+                    float x_border = low.x + float((compound_scale * current_size / 2) * uint(x_pos));
+                    float y_border = low.y + float((compound_scale * current_size / 2) * uint(y_pos));
+                    float z_border = low.z + float((compound_scale * current_size / 2) * uint(z_pos));
+
+                    if (!x_null) {
+                        x_factor = (x_border - pos.x) / direction.x;
+                        if (x_factor <= 0.0) {
+                            x_factor = max_factor;
+                        }
+                    } else {
+                        x_factor = max_factor;
+                    }
+                    if (!y_null) {
+                        y_factor = (y_border - pos.y) / direction.y;
+                        if (y_factor <= 0.0) {
+                            y_factor = max_factor;
+                        }
+                    } else {
+                        y_factor = max_factor;
+                    }
+                    if (!z_null) {
+                        z_factor = (z_border - pos.z) / direction.z;
+                        if (z_factor <= 0.0) {
+                            z_factor = max_factor;
+                        }
+                    } else {
+                        z_factor = max_factor;
+                    }
+                    float smallest_factor = min(min(x_factor, y_factor), z_factor);
+
+                    if (x_factor == smallest_factor) {
+                        is_x_hit = true;
+                        is_y_hit = false;
+                        is_z_hit = false;
+                    }
+                    if (y_factor == smallest_factor) {
+                        is_x_hit = false;
+                        is_y_hit = true;
+                        is_z_hit = false;
+                    }
+                    if (z_factor == smallest_factor) {
+                        is_x_hit = false;
+                        is_y_hit = false;
+                        is_z_hit = true;
+                    }
+
+                    // move a bit further to fully enter the next quadrant 
+                    smallest_factor += overstep;
+
+                    //has_moved = length(intersection_pos - (pos + smallest_factor * direction)) >= 0.00001;
+                    has_moved = intersection_pos != (pos + smallest_factor * direction);
+                    intersection_pos = pos + smallest_factor * direction;
+                }
+            }
+
+            uint hit_facing = uint(is_x_hit) * (2 + uint(x_pos)) + uint(is_y_hit) * (4 + uint(y_pos)) + uint(is_z_hit && !z_pos);
+            //result.has_hit = true;
+            result.end_pos = intersection_pos;
+            result.end_facing = hit_facing;
+            result.end_volume = volume_index;
+            result.end_direction = direction;
+        }
+
+        if (result.has_hit) {
+            break;
+        }
+
+        float x_border = volume_pos_x + float((scene_info.infos[volume_index + 3]) * uint(x_pos)) * volume_scale - 0.5 * volume_scale;
+        float y_border = volume_pos_y + float((scene_info.infos[volume_index + 4]) * uint(y_pos)) * volume_scale - 0.5 * volume_scale;
+        float z_border = volume_pos_z + float((scene_info.infos[volume_index + 5]) * uint(z_pos)) * volume_scale - 0.5 * volume_scale;
+        
+        bool needs_next_light = false;
+
+        if (!x_null) {
+            x_factor = (x_border - pos.x) / direction.x;
+        } else {
+            x_factor = max_factor;
+        }
+        if (!y_null) {
+            y_factor = (y_border - pos.y) / direction.y;
+        } else {
+            y_factor = max_factor;
+        }
+        if (!z_null) {
+            z_factor = (z_border - pos.z) / direction.z;
+        } else {
+            z_factor = max_factor;
+        }
+
+        if ((x_factor >= max_factor) && (y_factor >= max_factor) && (z_factor >= max_factor)) {
+            // no hit, finish tracking
+            break;
+        } else {
+            // if there is a border hit before reaching the end
+            // change to the relevant next volume
+            // Todo: look into removing ifs from this
+            uint hit_facing = 0;
+            uint u = 0;
+            uint v = 0;
+
+            bool is_x_smallest = x_factor < y_factor && x_factor < z_factor;
+            bool is_y_smallest = y_factor < x_factor && y_factor < z_factor;
+            bool is_z_smallest = z_factor <= x_factor && z_factor <= y_factor;
+
+            hit_facing = uint(is_x_smallest) * (2 + uint(x_pos)) + uint(is_y_smallest) * (4 + uint(y_pos)) + uint(is_z_smallest && !z_pos);
+            float smallest_factor = min(min(x_factor, y_factor), z_factor); // maybe use multiplication instead?
+            vec3 intersection_pos = pos + smallest_factor * direction;
+            u = uint(is_x_smallest) * (uint(round((intersection_pos.y - volume_pos_y) / volume_scale))) + 
+                uint(is_y_smallest || is_z_smallest) * (uint(round((intersection_pos.x - volume_pos_x) / volume_scale)));
+            v = uint(is_x_smallest || is_y_smallest) * (uint(round((intersection_pos.z - volume_pos_z) / volume_scale))) +
+                uint(is_z_smallest) * (uint(round((intersection_pos.y - volume_pos_y) / volume_scale)));
+
+            uint next_neighbor = sample_neighbor_from_scene_info(volume_index, uvec2(u, v), hit_facing);
+            uvec4 color_sample = sample_color_from_scene_info(volume_index, uvec2(u, v), hit_facing);
+
+            if (color_sample.xyz == uvec3(0, 0, 0)) {
+                // not a color hit, so check neighbor
+                if (next_neighbor != 0) {
+                    volume_index = next_neighbor;
+                    volume_scale = uintBitsToFloat(scene_info.infos[volume_index + array_descr_offset + color_array_offset - 1]);
+                    volume_pos_x = uintBitsToFloat(scene_info.infos[volume_index + 0]); 
+                    volume_pos_y = uintBitsToFloat(scene_info.infos[volume_index + 1]); 
+                    volume_pos_z = uintBitsToFloat(scene_info.infos[volume_index + 2]);
+                } else {
+                    // neighbor miss
+                    end_color_transparent = uvec4(255, 0, 0, 255);
+                    result.end_color = uvec4(255, 0, 0, 255);
+                    break;
+                }
+            } else {
+                if (next_neighbor != 0) {
+                    // transparent hit, move on but change the color
+                    end_volume_transparent = volume_index;
+                    color_mul_transparent = result.color_mul;
+
+                    volume_index = next_neighbor;
+                    volume_scale = uintBitsToFloat(scene_info.infos[volume_index + array_descr_offset + color_array_offset - 1]);
+                    volume_pos_x = uintBitsToFloat(scene_info.infos[volume_index + 0]); 
+                    volume_pos_y = uintBitsToFloat(scene_info.infos[volume_index + 1]); 
+                    volume_pos_z = uintBitsToFloat(scene_info.infos[volume_index + 2]);
+                    result.color_mul = result.color_mul * vec3(float(color_sample.x) / 255.0, float(color_sample.y) / 255.0, float(color_sample.z) / 255.0);
+                    result.has_transparent_hit = true;
+                    result.end_volume = volume_index;
+                    result.end_direction = direction;
+
+                    end_color_transparent = color_sample;
+                    end_raster_transparent = uvec2(u, v);
+                    end_pos_transparent = intersection_pos;
+                    end_facing_transparent = hit_facing;
+
+                    // stop iterating if there is barely anything left to see
+                    if (max(result.color_mul.x, max(result.color_mul.y, result.color_mul.z)) < 0.1) {
+                        break;
+                    }                    
+                } else {
+                    // color hit, either reflect or move on
+                    result.end_pos = intersection_pos;
+                    result.end_facing = hit_facing;
+                    result.end_color = color_sample;
+                    result.end_raster = uvec2(u, v);
+                    result.has_hit = true;
+                    result.end_volume = volume_index;
+                    result.end_direction = direction;
+
+                    float reflectivity = 1.0 - float(color_sample.w) / 255.0;
+                    vec3 refltective_color_mul = result.color_mul * vec3(float(color_sample.x) / 255.0, float(color_sample.y) / 255.0, float(color_sample.z) / 255.0);
+                    vec3 visibility_after_reflection = refltective_color_mul * reflectivity;
+                    //break;
+                    //max(visibility_after_reflection.x, max(visibility_after_reflection.y, visibility_after_reflection.z)) >= 0.1 && 
+                    if (max(visibility_after_reflection.x, max(visibility_after_reflection.y, visibility_after_reflection.z)) >= 0.1 && allow_reflect) {
+                        // do reflect
+                        direction = reflect_vector(direction, hit_facing);
+                        pos = intersection_pos;
+                        //max_factor -= smallest_factor;
+
+                        x_pos = direction.x > 0.0;
+                        x_null = (direction.x == 0.0);
+                        
+                        y_pos = direction.y > 0.0;
+                        y_null = (direction.y == 0.0);
+
+                        z_pos = direction.z > 0.0;
+                        z_null = (direction.z == 0.0);
+
+                        // clear volumetrics for reevaluation
+                        for (int i=0; i < max_num_compounds; i++) {
+                            done_volumetrics[i] = 0;
+                        }
+                    } else {
+                        break;
+                    }
+                }
+            }
+        }
+    }
+
+    result.end_factor = min(min(x_factor, y_factor), z_factor);
+    result.end_cycle = iteration_num;
+
+    // in case we have a transparent hit but no hit afterwards
+    if (!result.has_hit && result.has_transparent_hit) {
+        // did we stop because nothing could be seen through the object?
+        if (max(result.color_mul.x, max(result.color_mul.y, result.color_mul.z)) < 0.1) {
+            // if so count it as a hit and recover the pre transparent color multiplier
+            result.has_hit = true;
+            result.color_mul = color_mul_transparent;
+        }
+        result.end_pos = end_pos_transparent;
+        result.end_color = end_color_transparent;
+        result.end_volume = end_volume_transparent;
+        result.end_facing = end_facing_transparent;
+        result.end_raster = end_raster_transparent;
+    }
+
+    return result;
+}
+
+vec3 get_lighting_color(uint volume_start, vec3 starting_pos, vec4 orig_color_sample, vec3 normal) {
+    uint light_num = 0;
+
+    // initialize color
+    vec3 color_sum = vec3(0.0, 0.0, 0.0);// + (orig_color_sample.xyz * 0.005);
+
+    while (iteration_num < max_iterations) {
+        // setup light info
+        uint light_index = scene_info.infos[volume_start + 6 + light_num];
+        if (light_index == 0) {
+            // abort if there is no new light
+            break;
+        }
+        vec3 light_direction;
+        float max_factor;
+        if (scene_info.infos[light_index] == 0) {
+            //point light
+            light_direction = get_light_position(light_index) - starting_pos;
+            max_factor = 1.0;
+        } else if (scene_info.infos[light_index] == 1) {
+            // directional light
+            light_direction = -normalize(get_light_position(light_index));
+            max_factor = pos_infinity;
+        }
+        vec3 light_color = get_light_color(light_index);
+
+        Tracing result = trace_ray(volume_start, starting_pos, light_direction, max_factor, false);
+        // add result, if there is a hit the null vector will be added
+        color_sum += float(!result.has_hit) * result.color_mul * max(dot(normal, normalize(light_direction)), 0.0) * (orig_color_sample.xyz * light_color) / (length(light_direction) * length(light_direction));
+
+        light_num += 1;
+        if (light_num >= max_num_lights) {
+            break;
+        }
+    }
+
+    return color_sum;
+}
+
+vec3 diffuse_tracing(uint volume_start, uvec4 color_roughness, vec3 pos, uint f) {
+    vec4 orig_color_sample = vec4(float(color_roughness.x) / 255.0, float(color_roughness.y) / 255.0, float(color_roughness.z) / 255.0, 1);
+    vec3 normal = normal_for_facing(f);
+
+    vec3 color_sum = vec3(0.0, 0.0, 0.0);
+    for (int u_offset = -half_diffuse_raster_steps; u_offset <= half_diffuse_raster_steps; u_offset++) {
+        for (int v_offset = -half_diffuse_raster_steps; v_offset <= half_diffuse_raster_steps; v_offset++) {
+            float x_offset = raster_distance * float(u_offset) * float(f == 0 || f == 1 || f == 4 || f == 5);
+            float y_offset = raster_distance * float(u_offset) * float(f == 2 || f == 3);
+            y_offset += raster_distance * float(v_offset) * float(f == 0 || f == 1);
+            float z_offset = raster_distance * float(v_offset) * float(f == 4 || f == 5 || f == 2 || f == 3);
+
+            vec3 offset = vec3(x_offset, y_offset, z_offset);
+
+            color_sum += get_lighting_color(volume_start, pos + offset, orig_color_sample, normal) / float(raster_points);
+        }
+    }
+
+    return color_sum;
+}
+
+vec3 clamp_to_volume(uint volume_start, vec3 position) {
+    float volume_pos_x = uintBitsToFloat(scene_info.infos[volume_start + 0]); 
+    float volume_pos_y = uintBitsToFloat(scene_info.infos[volume_start + 1]); 
+    float volume_pos_z = uintBitsToFloat(scene_info.infos[volume_start + 2]); 
+    float volume_scale = uintBitsToFloat(scene_info.infos[volume_start + array_descr_offset + color_array_offset - 1]);
+
+    float high_x_border = volume_pos_x + float(scene_info.infos[volume_start + 3]) * volume_scale - 0.501 * volume_scale;
+    float high_y_border = volume_pos_y + float(scene_info.infos[volume_start + 4]) * volume_scale - 0.501 * volume_scale;
+    float high_z_border = volume_pos_z + float(scene_info.infos[volume_start + 5]) * volume_scale - 0.501 * volume_scale;
+
+    float low_x_border = float(volume_pos_x) - 0.501 * volume_scale;
+    float low_y_border = float(volume_pos_y) - 0.501 * volume_scale;
+    float low_z_border = float(volume_pos_z) - 0.501 * volume_scale;
+
+    return vec3(min(max(position.x, low_x_border), high_x_border), min(max(position.y, low_y_border), high_y_border), min(max(position.z, low_z_border), high_z_border));
+}
+
+vec2 clamp_to_quad(vec2 raster_pos, uvec2 min_raster_pos, uvec2 max_raster_pos) {
+    return vec2(max(min_raster_pos.x, min(max_raster_pos.x - 1, raster_pos.x)), max(min_raster_pos.y, min(max_raster_pos.y - 1, raster_pos.y)));
+}
+
+vec3 add_reflection(vec3 view_vector, uint f, uint volume_start, vec3 pos, uvec4 color_sample, vec3 color_sum) {
+    float reflectivity = 1.0 - float(color_sample.w) / 255.0;
+
+    if (reflectivity > 0.01) {
+        vec3 orig_color_sample = vec3(float(color_sample.x) / 255.0, float(color_sample.y) / 255.0, float(color_sample.z) / 255.0);
+        vec3 reflection_direction = reflect_vector(view_vector, f);
+        Tracing reflection_tracing = trace_ray(volume_start, pos, reflection_direction, pos_infinity, true);
+        if (reflection_tracing.has_hit || reflection_tracing.has_transparent_hit) {
+            vec3 color_from_reflection = diffuse_tracing(reflection_tracing.end_volume, reflection_tracing.end_color, reflection_tracing.end_pos, reflection_tracing.end_facing) * orig_color_sample;
+            color_sum = color_sum * (1.0 - reflectivity) + color_from_reflection * reflectivity;
+        }
+    }
+
+    return color_sum;
+}
\ No newline at end of file
diff --git a/shaders/rt_quad.frag b/shaders/rt_quad.frag
index 378ccc8..5fad61a 100644
--- a/shaders/rt_quad.frag
+++ b/shaders/rt_quad.frag
@@ -24,13 +24,19 @@ layout(binding = 0) uniform UniformBufferObject {
 // 3 - diffuse raster size (float, needs to be decoded)
 // 4 - max recursive rays
 // 5 - diffuse rays per hit
+// 6 - maximum number of compounds per light
 layout(binding = 2) readonly buffer SceneInfoBuffer{
      uint infos[]; 
 } scene_info;
 
-layout(binding = 4) buffer SceneInfoBuffer2 {
-   uint infos[];
-} scene_info2;
+layout(binding = 3) readonly buffer CompoundBuffer {
+   uint compounds[];
+};
+
+layout(binding = 10) readonly buffer OctTreeMemory {
+   uint oct_tree_mem[];
+};
+
 uint max_num_lights = scene_info.infos[0];
 uint max_iterations_per_light = scene_info.infos[1];
 // diffuse raytracing using a quadratic raster of rays
@@ -41,6 +47,8 @@ float pos_infinity = uintBitsToFloat(0x7F800000);
 // set limit for maximal iterations
 uint max_iterations = max_num_lights * max_iterations_per_light * raster_points;
 uint iteration_num = 0;
+const uint absolute_max_compounds = 10;
+uint max_num_compounds = min(scene_info.infos[6], absolute_max_compounds);
 
 uvec4 unpack_color(uint val) {
     // left most 8 bits first
@@ -52,7 +60,7 @@ uvec4 unpack_color(uint val) {
     return uvec4(val4, val3, val2, val1);
 }
 
-uint array_descr_offset = 6 + max_num_lights;
+uint array_descr_offset = 6 + max_num_lights + max_num_compounds;
 uint color_array_offset = 24 + 1;
 
 uint sample_neighbor_from_scene_info(uint volume_start, uvec2 raster_pos, uint f) {
@@ -204,6 +212,63 @@ vec3 reflect_vector(vec3 direction, uint facing) {
     return direction - 2.0 * dot(direction, normal) * normal;
 }
 
+uvec3 parent_child_vec(uint child_size, uint child_index) {
+    if (child_index == 1) {
+        return uvec3(0, 0, 0);
+    }
+    if (child_index == 2) {
+        return uvec3(child_size, 0, 0);
+    }
+    if (child_index == 3) {
+        return uvec3(0, child_size, 0);
+    }
+    if (child_index == 4) {
+        return uvec3(child_size, child_size, 0);
+    }
+    if (child_index == 5) {
+        return uvec3(0, 0, child_size);
+    }
+    if (child_index == 6) {
+        return uvec3(child_size, 0, child_size);
+    }
+    if (child_index == 7) {
+        return uvec3(0, child_size, child_size);
+    }
+    if (child_index == 8) {
+        return uvec3(child_size, child_size, child_size);
+    }
+    return uvec3(0, 0, 0);
+}
+
+uint next_oct_tree_child(vec3 mid_point, vec3 check_pos, bool child_open[8]) {
+    if (check_pos.x <= mid_point.x && check_pos.y <= mid_point.y && check_pos.z <= mid_point.z && child_open[0]) {
+        return 1;
+    }
+    if (check_pos.x >= mid_point.x && check_pos.y <= mid_point.y && check_pos.z <= mid_point.z && child_open[1]) {
+        return 2;
+    }
+    if (check_pos.x <= mid_point.x && check_pos.y >= mid_point.y && check_pos.z <= mid_point.z && child_open[2]) {
+        return 3;
+    }
+    if (check_pos.x >= mid_point.x && check_pos.y >= mid_point.y && check_pos.z <= mid_point.z && child_open[3]) {
+        return 4;
+    }
+    if (check_pos.x <= mid_point.x && check_pos.y <= mid_point.y && check_pos.z >= mid_point.z && child_open[4]) {
+        return 5;
+    }
+    if (check_pos.x >= mid_point.x && check_pos.y <= mid_point.y && check_pos.z >= mid_point.z && child_open[5]) {
+        return 6;
+    }
+    if (check_pos.x <= mid_point.x && check_pos.y >= mid_point.y && check_pos.z >= mid_point.z && child_open[6]) {
+        return 7;
+    }
+    if (check_pos.x >= mid_point.x && check_pos.y >= mid_point.y && check_pos.z >= mid_point.z && child_open[7]) {
+        return 8;
+    }
+
+    return 0; // return to parent
+}
+
 struct Tracing {
     vec3 end_pos;
     uvec4 end_color;
@@ -257,8 +322,303 @@ Tracing trace_ray(uint volume_start, vec3 starting_pos, vec3 start_direction, fl
     uvec2 end_raster_transparent;
     vec3 color_mul_transparent;
 
+    uint next_volumetric_index = 0;
+    uint[absolute_max_compounds] done_volumetrics;
+    for (int i=0; i < max_num_compounds; i++) {
+        done_volumetrics[i] = 0;
+    }
+
+    uint[absolute_max_compounds] compound_starts;
+    float[absolute_max_compounds] hit_factors;
+    bool[absolute_max_compounds] is_x_hits;
+    bool[absolute_max_compounds] is_y_hits;
+    bool[absolute_max_compounds] is_z_hits;
+    bool[absolute_max_compounds] hits_inside;
+
     while (iteration_num < max_iterations) {
         iteration_num ++;
+
+        for (int i=0; i < max_num_compounds; i++) {
+            compound_starts[i] = 0;
+            hit_factors[i] = 0.0;
+            is_x_hits[i] = false;
+            is_y_hits[i] = false;
+            is_z_hits[i] = false;
+            hits_inside[i] = false;
+        }
+
+        uint compound_num = 0;
+        // go over the borders by this amount
+        float overstep = 0.00001 / length(direction);
+        uint hits = 0;
+        // todo needs depth ordering of volumetrics inside of the volume
+        while (scene_info.infos[volume_index + 6 + max_num_lights + compound_num] != 0 && compound_num < max_num_compounds && iteration_num < max_iterations && !result.has_hit) {
+            uint compound_start = scene_info.infos[volume_index + 6 + max_num_lights + compound_num];
+            
+            bool already_checked = false;
+            for (int i=0; i < max_num_compounds; i++) {
+                if (compound_start == done_volumetrics[i]) {
+                    already_checked = true;
+                    break;
+                }
+            }            
+            if (already_checked) {
+                compound_num += 1;
+                continue;
+            }
+
+            //iteration_num ++;
+            uint oct_tree_index = compounds[compound_start + 8];
+            uint compound_grid_size = compounds[compound_start];
+            float compound_scale = uintBitsToFloat(compounds[compound_start + 1]);
+            vec3 compound_pos = vec3(uintBitsToFloat(compounds[compound_start + 5]), uintBitsToFloat(compounds[compound_start + 6]), uintBitsToFloat(compounds[compound_start + 7]));
+            // check if we hit the volume
+            float x_border = compound_pos.x + float((compound_grid_size) * uint(!x_pos)) * compound_scale;
+            float y_border = compound_pos.y + float((compound_grid_size) * uint(!y_pos)) * compound_scale;
+            float z_border = compound_pos.z + float((compound_grid_size) * uint(!z_pos)) * compound_scale;
+
+            if (!x_null) {
+                x_factor = (x_border - pos.x) / direction.x;
+            } else {
+                x_factor = max_factor;
+            }
+            if (!y_null) {
+                y_factor = (y_border - pos.y) / direction.y;
+            } else {
+                y_factor = max_factor;
+            }
+            if (!z_null) {
+                z_factor = (z_border - pos.z) / direction.z;
+            } else {
+                z_factor = max_factor;
+            }
+            x_factor += overstep;
+            y_factor += overstep;
+            z_factor += overstep;
+
+            vec3 intersection_pos = pos + 10.0 * overstep * direction;
+            bool is_x_hit = false;
+            bool is_y_hit = false;
+            bool is_z_hit = false;
+            bool hit_inside = false;
+            float hit_factor;
+            // check that either the hit is in range or we are inside of the compound from the start
+            if ((compound_pos.x <= intersection_pos.x && intersection_pos.x <= compound_pos.x + float(compound_grid_size) * compound_scale) && 
+                (compound_pos.y <= intersection_pos.y && intersection_pos.y <= compound_pos.y + float(compound_grid_size) * compound_scale) && 
+                (compound_pos.z <= intersection_pos.z && intersection_pos.z <= compound_pos.z + float(compound_grid_size) * compound_scale)){
+                hit_inside = true;
+                hit_factor = 10.0 * overstep;
+            } else {
+                vec3 intersection_pos_x = pos + x_factor * direction;
+                vec3 intersection_pos_y = pos + y_factor * direction;
+                vec3 intersection_pos_z = pos + z_factor * direction;
+                if ((compound_pos.x <= intersection_pos_x.x && intersection_pos_x.x <= compound_pos.x + float(compound_grid_size) * compound_scale) && 
+                    (compound_pos.y <= intersection_pos_x.y && intersection_pos_x.y <= compound_pos.y + float(compound_grid_size) * compound_scale) && 
+                    (compound_pos.z <= intersection_pos_x.z && intersection_pos_x.z <= compound_pos.z + float(compound_grid_size) * compound_scale) && x_factor > 0.0 && x_factor <= max_factor) {
+                    hit_inside = true;
+                    is_x_hit = true;
+                    intersection_pos = intersection_pos_x;
+                    hit_factor = x_factor;
+                }
+                    
+                if ((compound_pos.x <= intersection_pos_y.x && intersection_pos_y.x <= compound_pos.x + float(compound_grid_size) * compound_scale) && 
+                    (compound_pos.y <= intersection_pos_y.y && intersection_pos_y.y <= compound_pos.y + float(compound_grid_size) * compound_scale) && 
+                    (compound_pos.z <= intersection_pos_y.z && intersection_pos_y.z <= compound_pos.z + float(compound_grid_size) * compound_scale) && y_factor > 0.0 && y_factor <= max_factor && (y_factor < x_factor || !is_x_hit)) {
+                    hit_inside = true;
+                    is_y_hit = true;
+                    intersection_pos = intersection_pos_y;
+                    hit_factor = y_factor;
+                }
+                        
+                if ((compound_pos.x <= intersection_pos_z.x && intersection_pos_z.x <= compound_pos.x + float(compound_grid_size) * compound_scale) && 
+                    (compound_pos.y <= intersection_pos_z.y && intersection_pos_z.y <= compound_pos.y + float(compound_grid_size) * compound_scale) && 
+                    (compound_pos.z <= intersection_pos_z.z && intersection_pos_z.z <= compound_pos.z + float(compound_grid_size) * compound_scale) && z_factor > 0.0 && z_factor <= max_factor && (z_factor < x_factor || !is_x_hit) && (z_factor < y_factor || !is_y_hit)) {
+                    hit_inside = true;
+                    is_z_hit = true;
+                    intersection_pos = intersection_pos_z;
+                    hit_factor = z_factor;
+                }
+            }
+
+            compound_starts[hits] = compound_start;
+            hit_factors[hits] = hit_factor;
+            is_x_hits[hits] = is_x_hit;
+            is_y_hits[hits] = is_y_hit;
+            is_z_hits[hits] = is_z_hit;
+            hits_inside[hits] = hit_inside;
+            hits += 1 * uint(hit_inside);
+
+            done_volumetrics[next_volumetric_index] = compound_start;
+            next_volumetric_index = (next_volumetric_index + 1) % max_num_compounds;
+
+            compound_num += 1;
+        }
+
+        for (int i =0; i < hits; i++) {
+            if (result.has_hit) {
+                break;
+            }
+            // find encounters in order
+            float min_factor = max_factor;
+            uint min_index = 0;
+            for (int j = 0; j < hits; j++) {
+                if (hit_factors[j] < min_factor) {
+                    min_factor = hit_factors[j];
+                    min_index = j;
+                }
+            }
+            // set up the compound
+            uint compound_start = compound_starts[min_index];
+            bool is_x_hit = is_x_hits[min_index];
+            bool is_y_hit = is_y_hits[min_index];
+            bool is_z_hit = is_z_hits[min_index];
+            uint oct_tree_index = compounds[compound_start + 8];
+            uint compound_grid_size = compounds[compound_start];
+            float compound_scale = uintBitsToFloat(compounds[compound_start + 1]);
+            vec3 compound_pos = vec3(uintBitsToFloat(compounds[compound_start + 5]), uintBitsToFloat(compounds[compound_start + 6]), uintBitsToFloat(compounds[compound_start + 7]));
+            vec3 intersection_pos = pos + hit_factors[min_index] * direction;
+            // invalidate the min found
+            hit_factors[min_index] = max_factor;
+            
+            vec3 oct_tree_pos = vec3(compound_pos);
+            uint current_size = compound_grid_size;
+            vec3 mid_point = oct_tree_pos + float(current_size / 2) * vec3(compound_scale, compound_scale, compound_scale);
+            bool children_open[8] = {true, true, true, true, true, true, true, true};
+            uint oct_tree_address = oct_tree_index;
+            // iterate through the oct_tree
+            uint check_it = 0;
+            uint max_check_it = 60;
+            uint prev_child = 0;
+            uint prev_prev_child = 0;
+
+            uvec3 grid_pos = uvec3(0, 0, 0);
+            uvec3 parent_pos = uvec3(0, 0, 0);
+
+            bool has_moved = false;
+            while (!result.has_hit && check_it < max_check_it) {
+                // failsafe to get out in case has_moved runs into an accuracy issue
+                check_it ++;
+                oct_tree_pos = vec3(grid_pos) * compound_scale + compound_pos;
+                mid_point = oct_tree_pos + (float(current_size / 2) * vec3(compound_scale, compound_scale, compound_scale));
+
+                uint child_index = next_oct_tree_child(mid_point, intersection_pos, children_open);
+                if (child_index == 0) {
+                    // go up to parent
+                    // if parent is 0 abort, as we have reached the root node again and try to exit it
+                    if (oct_tree_mem[oct_tree_address] == 0) {
+                        break;
+                    }
+                    for (int i=0; i < 8; i++) {
+                        children_open[i] = true;
+                    }
+                    uint parent_index = oct_tree_mem[oct_tree_address];
+                    // check which child we came from
+                    child_index = 1 * uint(oct_tree_address == oct_tree_mem[parent_index + 1]) + 2 * uint(oct_tree_address == oct_tree_mem[parent_index + 2]) + 3 * uint(oct_tree_address == oct_tree_mem[parent_index + 3]) + 4 * uint(oct_tree_address == oct_tree_mem[parent_index + 4]) + 5 * uint(oct_tree_address == oct_tree_mem[parent_index + 5]) + 6 * uint(oct_tree_address == oct_tree_mem[parent_index + 6]) + 7 * uint(oct_tree_address == oct_tree_mem[parent_index + 7]) + 8 * uint(oct_tree_address == oct_tree_mem[parent_index + 8]);
+                    // mark as done to avoid reinvestigating, since intersection_pos is on its edge                        
+                    children_open[child_index - 1] = false;
+                    prev_prev_child = prev_child;
+                    prev_child = oct_tree_address;
+
+                    uvec3 back_vec = parent_child_vec(current_size, child_index);
+                    grid_pos -= parent_child_vec(current_size, child_index);
+                    current_size *= 2;
+                    oct_tree_address = parent_index;
+                } else {
+                    // go down into child
+                    if (current_size == 2) {
+                        // check block if hit break
+                        if (oct_tree_mem[oct_tree_address + child_index] != 0) {
+                            result.has_hit = true;
+                            result.end_color = unpack_color(oct_tree_mem[oct_tree_address + child_index]);
+                            break;
+                        }                            
+                    } else {
+                        // check if the child has content, else skip to next child of current parent
+                        uint x = oct_tree_mem[oct_tree_address + child_index];
+                        if (oct_tree_mem[x] != 0) {
+                            // change base address and position to child
+                            current_size /= 2;
+                            oct_tree_address = x;
+                            grid_pos += parent_child_vec(current_size, child_index);
+                            for (int i=0; i < 8; i++) {
+                                children_open[i] = true;
+                            }
+                            continue;
+                        }
+                    }
+                    children_open[child_index - 1] = false;
+                    
+                    // we did not go deeper or had a hit, so intersection pos needs to be updated
+                    // new intersection pos calc
+                    vec3 offset = vec3(parent_child_vec(current_size / 2, child_index)) * compound_scale;
+                    vec3 low = oct_tree_pos + offset;
+                    float x_border = low.x + float((compound_scale * current_size / 2) * uint(x_pos));
+                    float y_border = low.y + float((compound_scale * current_size / 2) * uint(y_pos));
+                    float z_border = low.z + float((compound_scale * current_size / 2) * uint(z_pos));
+
+                    if (!x_null) {
+                        x_factor = (x_border - pos.x) / direction.x;
+                        if (x_factor <= 0.0) {
+                            x_factor = max_factor;
+                        }
+                    } else {
+                        x_factor = max_factor;
+                    }
+                    if (!y_null) {
+                        y_factor = (y_border - pos.y) / direction.y;
+                        if (y_factor <= 0.0) {
+                            y_factor = max_factor;
+                        }
+                    } else {
+                        y_factor = max_factor;
+                    }
+                    if (!z_null) {
+                        z_factor = (z_border - pos.z) / direction.z;
+                        if (z_factor <= 0.0) {
+                            z_factor = max_factor;
+                        }
+                    } else {
+                        z_factor = max_factor;
+                    }
+                    float smallest_factor = min(min(x_factor, y_factor), z_factor);
+
+                    if (x_factor == smallest_factor) {
+                        is_x_hit = true;
+                        is_y_hit = false;
+                        is_z_hit = false;
+                    }
+                    if (y_factor == smallest_factor) {
+                        is_x_hit = false;
+                        is_y_hit = true;
+                        is_z_hit = false;
+                    }
+                    if (z_factor == smallest_factor) {
+                        is_x_hit = false;
+                        is_y_hit = false;
+                        is_z_hit = true;
+                    }
+
+                    // move a bit further to fully enter the next quadrant 
+                    smallest_factor += overstep;
+
+                    //has_moved = length(intersection_pos - (pos + smallest_factor * direction)) >= 0.00001;
+                    has_moved = intersection_pos != (pos + smallest_factor * direction);
+                    intersection_pos = pos + smallest_factor * direction;
+                }
+            }
+
+            uint hit_facing = uint(is_x_hit) * (2 + uint(x_pos)) + uint(is_y_hit) * (4 + uint(y_pos)) + uint(is_z_hit && !z_pos);
+            //result.has_hit = true;
+            result.end_pos = intersection_pos;
+            result.end_facing = hit_facing;
+            result.end_volume = volume_index;
+            result.end_direction = direction;
+        }
+
+        if (result.has_hit) {
+            break;
+        }
+
         float x_border = volume_pos_x + float((scene_info.infos[volume_index + 3]) * uint(x_pos)) * volume_scale - 0.5 * volume_scale;
         float y_border = volume_pos_y + float((scene_info.infos[volume_index + 4]) * uint(y_pos)) * volume_scale - 0.5 * volume_scale;
         float z_border = volume_pos_z + float((scene_info.infos[volume_index + 5]) * uint(z_pos)) * volume_scale - 0.5 * volume_scale;
@@ -267,12 +627,18 @@ Tracing trace_ray(uint volume_start, vec3 starting_pos, vec3 start_direction, fl
 
         if (!x_null) {
             x_factor = (x_border - pos.x) / direction.x;
+        } else {
+            x_factor = max_factor;
         }
         if (!y_null) {
             y_factor = (y_border - pos.y) / direction.y;
+        } else {
+            y_factor = max_factor;
         }
         if (!z_null) {
             z_factor = (z_border - pos.z) / direction.z;
+        } else {
+            z_factor = max_factor;
         }
 
         if ((x_factor >= max_factor) && (y_factor >= max_factor) && (z_factor >= max_factor)) {
@@ -369,6 +735,11 @@ Tracing trace_ray(uint volume_start, vec3 starting_pos, vec3 start_direction, fl
 
                         z_pos = direction.z > 0.0;
                         z_null = (direction.z == 0.0);
+
+                        // clear volumetrics for reevaluation
+                        for (int i=0; i < max_num_compounds; i++) {
+                            done_volumetrics[i] = 0;
+                        }
                     } else {
                         break;
                     }
@@ -437,8 +808,7 @@ vec3 get_lighting_color(uint volume_start, vec3 starting_pos, vec4 orig_color_sa
     return color_sum;
 }
 
-vec3 diffuse_tracing(uint volume_start, uvec2 raster_pos, vec3 pos, uint f) {
-    uvec4 color_roughness = sample_color_from_scene_info(volume_start, raster_pos, f);
+vec3 diffuse_tracing(uint volume_start, uvec4 color_roughness, vec3 pos, uint f) {
     vec4 orig_color_sample = vec4(float(color_roughness.x) / 255.0, float(color_roughness.y) / 255.0, float(color_roughness.z) / 255.0, 1);
     vec3 normal = normal_for_facing(f);
 
@@ -459,10 +829,6 @@ vec3 diffuse_tracing(uint volume_start, uvec2 raster_pos, vec3 pos, uint f) {
     return color_sum;
 }
 
-vec3 diffuse_tracing(uint volume_start, vec2 raster_pos, vec3 pos, uint f) {
-    return diffuse_tracing(volume_start, uvec2(uint(floor(raster_pos.x)), uint(floor(raster_pos.y))), pos, f);
-}
-
 vec3 clamp_to_volume(uint volume_start, vec3 position) {
     float volume_pos_x = uintBitsToFloat(scene_info.infos[volume_start + 0]); 
     float volume_pos_y = uintBitsToFloat(scene_info.infos[volume_start + 1]); 
@@ -492,7 +858,7 @@ vec3 add_reflection(vec3 view_vector, uint f, uint volume_start, vec3 pos, uvec4
         vec3 reflection_direction = reflect_vector(view_vector, f);
         Tracing reflection_tracing = trace_ray(volume_start, pos, reflection_direction, pos_infinity, true);
         if (reflection_tracing.has_hit || reflection_tracing.has_transparent_hit) {
-            vec3 color_from_reflection = diffuse_tracing(reflection_tracing.end_volume, reflection_tracing.end_raster, reflection_tracing.end_pos, reflection_tracing.end_facing) * orig_color_sample;
+            vec3 color_from_reflection = diffuse_tracing(reflection_tracing.end_volume, reflection_tracing.end_color, reflection_tracing.end_pos, reflection_tracing.end_facing) * orig_color_sample;
             color_sum = color_sum * (1.0 - reflectivity) + color_from_reflection * reflectivity;
         }
     }
@@ -509,13 +875,15 @@ void main() {
 
     uint orig_neighbor = sample_neighbor_from_scene_info(fragVolumeStart, clamped_raster_pos, facing);
     if (orig_neighbor != 0) {
-        vec3 color_direct = diffuse_tracing(fragVolumeStart, clamped_raster_pos, clamped_pos, facing);
+        vec3 color_direct = diffuse_tracing(fragVolumeStart, color_roughness, clamped_pos, facing);
 
         Tracing t = trace_ray(fragVolumeStart, ubo.camera_pos, clamped_pos - ubo.camera_pos, pos_infinity, false);
         float opacity = float(color_roughness.w) / 255.0;
         vec3 color_seen_through;
         if (t.has_hit) {
-            color_seen_through = diffuse_tracing(t.end_volume, t.end_raster, t.end_pos, t.end_facing) * orig_color_sample * t.color_mul;
+            //color_seen_through = vec3(float(t.end_color.x) / 255.0, float(t.end_color.y) / 255.0, float(t.end_color.z) / 255.0);
+            
+            color_seen_through = diffuse_tracing(t.end_volume, t.end_color, t.end_pos, t.end_facing) * orig_color_sample * t.color_mul;
             color_seen_through = add_reflection(t.end_direction, t.end_facing, t.end_volume, t.end_pos, t.end_color, color_seen_through);
         }
         else {
@@ -525,12 +893,14 @@ void main() {
 
         color_direct = add_reflection(normalize(clamped_pos - ubo.camera_pos), facing, fragVolumeStart, clamped_pos, color_roughness, color_direct);
         color_sum = opacity * color_direct + (1.0 - opacity) * color_seen_through;
+        
+        //color_sum = color_seen_through;
     }
     else {
-        color_sum = diffuse_tracing(fragVolumeStart, clamped_raster_pos, clamped_pos, facing);
+        color_sum = diffuse_tracing(fragVolumeStart, color_roughness, clamped_pos, facing);
 
         color_sum = add_reflection(normalize(clamped_pos - ubo.camera_pos), facing, fragVolumeStart, clamped_pos, color_roughness, color_sum);
     }
 
     outColor = vec4(color_sum, 1.0);
-}
\ No newline at end of file
+}
diff --git a/shaders/rt_quad_placeholder.frag b/shaders/rt_quad_placeholder.frag
new file mode 100644
index 0000000..0f69b04
--- /dev/null
+++ b/shaders/rt_quad_placeholder.frag
@@ -0,0 +1,51 @@
+#version 450
+
+layout(location = 0) in vec2 fragRasterPos;
+layout(location = 1) flat in uint fragVolumeStart;
+layout(location = 2) in vec3 origPosition;
+layout(location = 3) flat in uint facing;
+layout(location = 4) flat in uvec2 minRasterPos;
+layout(location = 5) flat in uvec2 maxRasterPos;
+
+layout(location = 0) out vec4 outColor;
+
+#include rt_lib.frag
+
+void main() {
+    vec3 clamped_pos = clamp_to_volume(fragVolumeStart, origPosition);
+    vec2 clamped_raster_pos = clamp_to_quad(fragRasterPos, minRasterPos, maxRasterPos);
+    uvec4 color_roughness = sample_color_from_scene_info(fragVolumeStart, clamped_raster_pos, facing);
+    vec3 orig_color_sample = vec3(float(color_roughness.x) / 255.0, float(color_roughness.y) / 255.0, float(color_roughness.z) / 255.0);
+    vec3 color_sum;
+
+    uint orig_neighbor = sample_neighbor_from_scene_info(fragVolumeStart, clamped_raster_pos, facing);
+    if (orig_neighbor != 0) {
+        vec3 color_direct = diffuse_tracing(fragVolumeStart, color_roughness, clamped_pos, facing);
+
+        Tracing t = trace_ray(fragVolumeStart, ubo.camera_pos, clamped_pos - ubo.camera_pos, pos_infinity, false);
+        float opacity = float(color_roughness.w) / 255.0;
+        vec3 color_seen_through;
+        if (t.has_hit) {
+            //color_seen_through = vec3(float(t.end_color.x) / 255.0, float(t.end_color.y) / 255.0, float(t.end_color.z) / 255.0);
+            
+            color_seen_through = diffuse_tracing(t.end_volume, t.end_color, t.end_pos, t.end_facing) * orig_color_sample * t.color_mul;
+            color_seen_through = add_reflection(t.end_direction, t.end_facing, t.end_volume, t.end_pos, t.end_color, color_seen_through);
+        }
+        else {
+            // Todo: hit sky box
+            color_seen_through = vec3(0.0, 0.0, 0.0);
+        }
+
+        color_direct = add_reflection(normalize(clamped_pos - ubo.camera_pos), facing, fragVolumeStart, clamped_pos, color_roughness, color_direct);
+        color_sum = opacity * color_direct + (1.0 - opacity) * color_seen_through;
+        
+        //color_sum = color_seen_through;
+    }
+    else {
+        color_sum = diffuse_tracing(fragVolumeStart, color_roughness, clamped_pos, facing);
+
+        color_sum = add_reflection(normalize(clamped_pos - ubo.camera_pos), facing, fragVolumeStart, clamped_pos, color_roughness, color_sum);
+    }
+
+    outColor = vec4(color_sum, 1.0);
+}
\ No newline at end of file
diff --git a/src/app_data.rs b/src/app_data.rs
index 0dafc31..2bfad28 100644
--- a/src/app_data.rs
+++ b/src/app_data.rs
@@ -27,7 +27,7 @@ pub struct AppData {
     pub pipeline_compute_grow_one: vk::Pipeline,
     pub pipeline_compute_grow_two: vk::Pipeline,
     pub pipeline_compute_grow_three: vk::Pipeline,
-    pub pipeline_compute_combine: vk::Pipeline,
+    pub pipeline_compute_mempos: vk::Pipeline,
 
     pub framebuffers: Vec<vk::Framebuffer>,
     pub command_pool: vk::CommandPool,
@@ -60,6 +60,9 @@ pub struct AppData {
     pub compute_out_storage_buffers_size_three: Vec<vk::Buffer>,
     pub compute_out_storage_buffers_memory_size_three: Vec<vk::DeviceMemory>,
 
+    pub compute_out_storage_buffers_oct_tree: Vec<vk::Buffer>,
+    pub compute_out_storage_buffers_memory_oct_tree: Vec<vk::DeviceMemory>,
+
     pub compute_out_cuboid_buffers: Vec<vk::Buffer>,
     pub compute_out_cuboid_buffers_memory: Vec<vk::DeviceMemory>,
 
@@ -92,8 +95,11 @@ pub struct AppData {
     pub compute_task_one_size: usize,
     pub compute_task_one_out_buffer_size: u64,
     pub compute_task_one_out_size: u64,
+    pub compute_task_oct_tree_size: u64,
+    pub compute_task_oct_tree_nodes: u64,
     // values passed to shader
     pub num_lights_per_volume: u32,
+    pub num_compound_per_volume: u32,
     pub min_light_weight: f32,
     pub max_iterations_per_light: u32,
     pub diffuse_raster_steps: u32,
diff --git a/src/buffer.rs b/src/buffer.rs
index 8374162..9326b71 100644
--- a/src/buffer.rs
+++ b/src/buffer.rs
@@ -206,13 +206,13 @@ pub unsafe fn create_descriptor_set_layout(
         .binding(2)
         .descriptor_type(vk::DescriptorType::STORAGE_BUFFER)
         .descriptor_count(1)
-        .stage_flags(vk::ShaderStageFlags::FRAGMENT);
+        .stage_flags(vk::ShaderStageFlags::FRAGMENT | vk::ShaderStageFlags::COMPUTE);
 
     let storage_binding_compute_in = vk::DescriptorSetLayoutBinding::builder()
         .binding(3)
         .descriptor_type(vk::DescriptorType::STORAGE_BUFFER)
         .descriptor_count(1)
-        .stage_flags(vk::ShaderStageFlags::COMPUTE);
+        .stage_flags(vk::ShaderStageFlags::COMPUTE | vk::ShaderStageFlags::FRAGMENT);
     
     let storage_binding_compute_out_color = vk::DescriptorSetLayoutBinding::builder()
         .binding(4)
@@ -250,7 +250,13 @@ pub unsafe fn create_descriptor_set_layout(
         .descriptor_count(1)
         .stage_flags(vk::ShaderStageFlags::FRAGMENT | vk::ShaderStageFlags::COMPUTE);
 
-    let bindings = &[ubo_binding, sampler_binding, storage_binding_render, storage_binding_compute_in, storage_binding_compute_out_color, storage_binding_compute_cuboid_out, storage_binding_compute_cuboid_index_out, storage_binding_compute_out_size_two, storage_binding_compute_out_size_three, storage_binding_compute_out_size_transparent];
+    let storage_binding_compute_out_oct_tree = vk::DescriptorSetLayoutBinding::builder()
+        .binding(10)
+        .descriptor_type(vk::DescriptorType::STORAGE_BUFFER)
+        .descriptor_count(1)
+        .stage_flags(vk::ShaderStageFlags::FRAGMENT | vk::ShaderStageFlags::COMPUTE);
+
+    let bindings = &[ubo_binding, sampler_binding, storage_binding_render, storage_binding_compute_in, storage_binding_compute_out_color, storage_binding_compute_cuboid_out, storage_binding_compute_cuboid_index_out, storage_binding_compute_out_size_two, storage_binding_compute_out_size_three, storage_binding_compute_out_size_transparent, storage_binding_compute_out_oct_tree];
     let info = vk::DescriptorSetLayoutCreateInfo::builder()
         .bindings(bindings);
     
@@ -311,6 +317,9 @@ pub unsafe fn create_storage_buffers(
     data.compute_out_cuboid_index_buffers.clear();
     data.compute_out_cuboid_index_buffers_memory.clear();
 
+    data.compute_out_storage_buffers_oct_tree.clear();
+    data.compute_out_storage_buffers_memory_oct_tree.clear();
+
     for _ in 0..data.swapchain_images.len() {
         let (storage_buffer, storage_buffer_memory) = create_buffer(
             instance,
@@ -363,7 +372,7 @@ pub unsafe fn create_storage_buffers(
             instance,
             device,
             data,
-            (size_of::<u32>() * 2) as u64 * data.compute_task_one_out_buffer_size.max(1),
+            (size_of::<u32>()) as u64 * data.compute_task_one_out_buffer_size.max(1),
             vk::BufferUsageFlags::STORAGE_BUFFER,
             vk::MemoryPropertyFlags::DEVICE_LOCAL,
         )?;
@@ -375,7 +384,7 @@ pub unsafe fn create_storage_buffers(
             instance,
             device,
             data,
-            (size_of::<u32>() * 3) as u64 * data.compute_task_one_out_buffer_size.max(1),
+            (size_of::<u32>()) as u64 * data.compute_task_one_out_buffer_size.max(1),
             vk::BufferUsageFlags::STORAGE_BUFFER,
             vk::MemoryPropertyFlags::DEVICE_LOCAL,
         )?;
@@ -383,6 +392,18 @@ pub unsafe fn create_storage_buffers(
         data.compute_out_storage_buffers_size_three.push(storage_buffer);
         data.compute_out_storage_buffers_memory_size_three.push(storage_buffer_memory);
 
+        let (storage_buffer, storage_buffer_memory) = create_buffer(
+            instance,
+            device,
+            data,
+            (size_of::<u32>()) as u64 * data.compute_task_oct_tree_size.max(1),
+            vk::BufferUsageFlags::STORAGE_BUFFER,
+            vk::MemoryPropertyFlags::DEVICE_LOCAL,
+        )?;
+
+        data.compute_out_storage_buffers_oct_tree.push(storage_buffer);
+        data.compute_out_storage_buffers_memory_oct_tree.push(storage_buffer_memory);
+
         let (storage_buffer, storage_buffer_memory) = create_buffer(
             instance,
             device,
@@ -551,8 +572,12 @@ pub unsafe fn create_descriptor_pool(device: &Device, data: &mut app_data::AppDa
     let compute_out_storage_transparent_size = vk::DescriptorPoolSize::builder()
         .type_(vk::DescriptorType::STORAGE_BUFFER)
         .descriptor_count(data.swapchain_images.len() as u32);
+
+    let compute_out_storage_oct_tree = vk::DescriptorPoolSize::builder()
+        .type_(vk::DescriptorType::STORAGE_BUFFER)
+        .descriptor_count(data.swapchain_images.len() as u32);
     
-    let pool_sizes = &[ubo_size, sampler_size, render_storage_size, compute_in_storage_size, compute_out_storage_color_size, compute_out_cuboid_size, compute_out_cuboid_index_size, compute_out_storage_size_two_size, compute_out_storage_size_three_size, compute_out_storage_transparent_size];
+    let pool_sizes = &[ubo_size, sampler_size, render_storage_size, compute_in_storage_size, compute_out_storage_color_size, compute_out_cuboid_size, compute_out_cuboid_index_size, compute_out_storage_size_two_size, compute_out_storage_size_three_size, compute_out_storage_transparent_size, compute_out_storage_oct_tree];
     let info = vk::DescriptorPoolCreateInfo::builder()
         .pool_sizes(pool_sizes)
         .max_sets(data.swapchain_images.len() as u32);
@@ -625,7 +650,7 @@ pub unsafe fn create_descriptor_sets(device: &Device, data: &mut app_data::AppDa
         let info = vk::DescriptorBufferInfo::builder()
             .buffer(data.compute_out_storage_buffers_color[i])
             .offset(0)
-            .range((size_of::<u32>() * 3) as u64 * data.compute_task_one_out_buffer_size.max(1));
+            .range((size_of::<u32>()) as u64 * data.compute_task_one_out_buffer_size.max(1));
         let storage_info = &[info];
 
         let storage_write_compute_out_color = vk::WriteDescriptorSet::builder()
@@ -638,7 +663,7 @@ pub unsafe fn create_descriptor_sets(device: &Device, data: &mut app_data::AppDa
         let info = vk::DescriptorBufferInfo::builder()
             .buffer(data.compute_out_storage_buffers_size_two[i])
             .offset(0)
-            .range((size_of::<u32>() * 2) as u64 * data.compute_task_one_out_buffer_size.max(1));
+            .range((size_of::<u32>()) as u64 * data.compute_task_one_out_buffer_size.max(1));
         let storage_info = &[info];
 
         let storage_write_compute_out_size_two = vk::WriteDescriptorSet::builder()
@@ -651,7 +676,7 @@ pub unsafe fn create_descriptor_sets(device: &Device, data: &mut app_data::AppDa
         let info = vk::DescriptorBufferInfo::builder()
             .buffer(data.compute_out_storage_buffers_size_three[i])
             .offset(0)
-            .range((size_of::<u32>() * 3) as u64 * data.compute_task_one_out_buffer_size.max(1));
+            .range((size_of::<u32>()) as u64 * data.compute_task_one_out_buffer_size.max(1));
         let storage_info = &[info];
 
         let storage_write_compute_out_size_three = vk::WriteDescriptorSet::builder()
@@ -664,7 +689,7 @@ pub unsafe fn create_descriptor_sets(device: &Device, data: &mut app_data::AppDa
         let info = vk::DescriptorBufferInfo::builder()
             .buffer(data.compute_out_storage_buffers_transparent[i])
             .offset(0)
-            .range((size_of::<bool>() * 3) as u64 * data.compute_task_one_out_buffer_size.max(1));
+            .range((size_of::<bool>()) as u64 * data.compute_task_one_out_buffer_size.max(1));
         let storage_info = &[info];
 
         let storage_write_compute_out_transparent = vk::WriteDescriptorSet::builder()
@@ -674,6 +699,19 @@ pub unsafe fn create_descriptor_sets(device: &Device, data: &mut app_data::AppDa
             .descriptor_type(vk::DescriptorType::STORAGE_BUFFER)
             .buffer_info(storage_info);
 
+        let info = vk::DescriptorBufferInfo::builder()
+            .buffer(data.compute_out_storage_buffers_oct_tree[i])
+            .offset(0)
+            .range((size_of::<u32>()) as u64 * data.compute_task_oct_tree_size.max(1));
+        let storage_info = &[info];
+
+        let storage_write_compute_out_oct_tree = vk::WriteDescriptorSet::builder()
+            .dst_set(data.descriptor_sets[i])
+            .dst_binding(10)
+            .dst_array_element(0)
+            .descriptor_type(vk::DescriptorType::STORAGE_BUFFER)
+            .buffer_info(storage_info);
+
         let info = vk::DescriptorBufferInfo::builder()
             .buffer(data.compute_out_cuboid_buffers[i])
             .offset(0)
@@ -702,7 +740,7 @@ pub unsafe fn create_descriptor_sets(device: &Device, data: &mut app_data::AppDa
         
 
         device.update_descriptor_sets(
-            &[ubo_write, sampler_write, storage_write_render, storage_write_compute_in, storage_write_compute_out_color, storage_write_compute_cuboid_out, storage_write_compute_cuboid_index_out, storage_write_compute_out_size_two, storage_write_compute_out_size_three, storage_write_compute_out_transparent],
+            &[ubo_write, sampler_write, storage_write_render, storage_write_compute_in, storage_write_compute_out_color, storage_write_compute_cuboid_out, storage_write_compute_cuboid_index_out, storage_write_compute_out_size_two, storage_write_compute_out_size_three, storage_write_compute_out_transparent, storage_write_compute_out_oct_tree],
             &[] as &[vk::CopyDescriptorSet],
         );
     }
diff --git a/src/command_buffer.rs b/src/command_buffer.rs
index e477391..ae41ae1 100644
--- a/src/command_buffer.rs
+++ b/src/command_buffer.rs
@@ -85,14 +85,6 @@ pub unsafe fn create_command_buffers(device: &Device, data: &mut app_data::AppDa
                 .size(vk::WHOLE_SIZE as u64)
                 .build();
 
-            device.cmd_pipeline_barrier(*command_buffer,
-                vk::PipelineStageFlags::COMPUTE_SHADER,
-                vk::PipelineStageFlags::VERTEX_INPUT,
-                vk::DependencyFlags::DEVICE_GROUP,
-                &[] as &[vk::MemoryBarrier],
-                &[buffer_memory_barrier_index, buffer_memory_barrier_vertex],
-                &[] as &[vk::ImageMemoryBarrier]);
-
             // compute storage barrier
             let buffer_memory_barrier_color = vk::BufferMemoryBarrier::builder()
                 .buffer(data.compute_out_storage_buffers_color[i])
@@ -155,7 +147,14 @@ pub unsafe fn create_command_buffers(device: &Device, data: &mut app_data::AppDa
                 &[data.descriptor_sets[i]],
                     &[]);
             
-            device.cmd_dispatch(*command_buffer, (data.compute_task_one_size as f64 / 16.0).ceil() as u32, 1, 1);
+            device.cmd_dispatch(*command_buffer, ((data.compute_task_one_size / 2) as f64 / 16.0).ceil() as u32, 1, 1);
+            
+            let buffer_memory_barrier_in = vk::BufferMemoryBarrier::builder()
+                .buffer(data.compute_out_storage_buffers_size_three[i])
+                .src_access_mask(vk::AccessFlags::SHADER_READ)
+                .dst_access_mask(vk::AccessFlags::SHADER_WRITE)
+                .size(vk::WHOLE_SIZE as u64)
+                .build();
 
             let buffer_memory_barrier_out = vk::BufferMemoryBarrier::builder()
                 .buffer(data.compute_out_storage_buffers_size_two[i])
@@ -169,7 +168,7 @@ pub unsafe fn create_command_buffers(device: &Device, data: &mut app_data::AppDa
                 vk::PipelineStageFlags::COMPUTE_SHADER,
                 vk::DependencyFlags::DEVICE_GROUP,
                 &[] as &[vk::MemoryBarrier],
-                &[buffer_memory_barrier_out],
+                &[buffer_memory_barrier_in, buffer_memory_barrier_out],
                 &[] as &[vk::ImageMemoryBarrier]);
 
             // grow z axis
@@ -184,7 +183,14 @@ pub unsafe fn create_command_buffers(device: &Device, data: &mut app_data::AppDa
                 &[data.descriptor_sets[i]],
                     &[]);
             
-            device.cmd_dispatch(*command_buffer, (data.compute_task_one_size as f64 / 16.0).ceil() as u32, 1, 1);
+            device.cmd_dispatch(*command_buffer, ((data.compute_task_one_size / 2) as f64 / 16.0).ceil() as u32, 1, 1);
+            
+            let buffer_memory_barrier_in = vk::BufferMemoryBarrier::builder()
+                .buffer(data.compute_out_storage_buffers_size_two[i])
+                .src_access_mask(vk::AccessFlags::SHADER_READ)
+                .dst_access_mask(vk::AccessFlags::SHADER_WRITE)
+                .size(vk::WHOLE_SIZE as u64)
+                .build();
 
             let buffer_memory_barrier_out = vk::BufferMemoryBarrier::builder()
                 .buffer(data.compute_out_storage_buffers_size_three[i])
@@ -198,12 +204,12 @@ pub unsafe fn create_command_buffers(device: &Device, data: &mut app_data::AppDa
                 vk::PipelineStageFlags::COMPUTE_SHADER,
                 vk::DependencyFlags::DEVICE_GROUP,
                 &[] as &[vk::MemoryBarrier],
-                &[buffer_memory_barrier_out],
+                &[buffer_memory_barrier_in, buffer_memory_barrier_out],
                 &[] as &[vk::ImageMemoryBarrier]);
 
-            // combine element
+            // calculate mem size
             device.cmd_bind_pipeline(
-                *command_buffer, vk::PipelineBindPoint::COMPUTE, data.pipeline_compute_combine);
+                *command_buffer, vk::PipelineBindPoint::COMPUTE, data.pipeline_compute_mempos);
 
             device.cmd_bind_descriptor_sets(
                 *command_buffer, 
@@ -213,10 +219,10 @@ pub unsafe fn create_command_buffers(device: &Device, data: &mut app_data::AppDa
                 &[data.descriptor_sets[i]],
                     &[]);
             
-            device.cmd_dispatch(*command_buffer, (data.compute_task_one_size as f64 / 16.0).ceil() as u32, 1, 1);
+            device.cmd_dispatch(*command_buffer, (data.compute_task_oct_tree_nodes as f64 / 16.0).ceil() as u32, 1, 1);
 
             let buffer_memory_barrier_out = vk::BufferMemoryBarrier::builder()
-                .buffer(data.render_storage_buffers[i])
+                .buffer(data.compute_out_storage_buffers_oct_tree[i])
                 .src_access_mask(vk::AccessFlags::SHADER_WRITE)
                 .dst_access_mask(vk::AccessFlags::SHADER_READ)
                 .size(vk::WHOLE_SIZE as u64)
@@ -229,6 +235,14 @@ pub unsafe fn create_command_buffers(device: &Device, data: &mut app_data::AppDa
                 &[] as &[vk::MemoryBarrier],
                 &[buffer_memory_barrier_out],
                 &[] as &[vk::ImageMemoryBarrier]);
+
+            device.cmd_pipeline_barrier(*command_buffer,
+                vk::PipelineStageFlags::COMPUTE_SHADER,
+                vk::PipelineStageFlags::VERTEX_INPUT,
+                vk::DependencyFlags::DEVICE_GROUP,
+                &[] as &[vk::MemoryBarrier],
+                &[buffer_memory_barrier_index, buffer_memory_barrier_vertex],
+                &[] as &[vk::ImageMemoryBarrier]);
         }
         // start render pass
         let clear_values = &[color_clear_value, depth_clear_value];
diff --git a/src/main.rs b/src/main.rs
index 1b2714e..9c525e7 100644
--- a/src/main.rs
+++ b/src/main.rs
@@ -195,6 +195,7 @@ impl App {
         let mut data = app_data::AppData::default();
         data.use_geometry_shader = false;
         data.num_lights_per_volume = 5;
+        data.num_compound_per_volume = 5;
         data.min_light_weight = 0.0001;
         data.max_iterations_per_light = 20;
         data.diffuse_raster_steps = 0;
@@ -281,7 +282,7 @@ impl App {
 
         self.update_uniform_buffer(image_index)?;
         let time = self.appstart.elapsed().as_secs_f32() / 1.0;
-        self.scene_handler.point_lights[0].borrow_mut().set_pos(cgmath::vec3((10.0 + 64.0) as f32 + time.sin() * 2.0, (10.0 + 64.0) as f32 + time.cos() * 2.0, 11.0));
+        //self.scene_handler.point_lights[0].borrow_mut().set_pos(cgmath::vec3((10.0 + 64.0) as f32 + time.sin() * 2.0, (10.0 + 64.0) as f32 + time.cos() * 2.0, 11.0));
         self.synchronized = 0;
 
         if self.synchronized < MAX_FRAMES_IN_FLIGHT {
@@ -441,13 +442,20 @@ impl App {
             .iter()
             .for_each(|m| self.device.free_memory(*m, None));
 
-            self.data.compute_out_storage_buffers_size_three
+        self.data.compute_out_storage_buffers_size_three
             .iter()
             .for_each(|b| self.device.destroy_buffer(*b, None));
         self.data.compute_out_storage_buffers_memory_size_three
             .iter()
             .for_each(|m| self.device.free_memory(*m, None));
 
+        self.data.compute_out_storage_buffers_oct_tree
+            .iter()
+            .for_each(|b| self.device.destroy_buffer(*b, None));
+        self.data.compute_out_storage_buffers_memory_oct_tree
+            .iter()
+            .for_each(|m| self.device.free_memory(*m, None));
+
         self.data.compute_out_cuboid_buffers
             .iter()
             .for_each(|b| self.device.destroy_buffer(*b, None));
@@ -474,7 +482,7 @@ impl App {
         self.device.destroy_pipeline(self.data.pipeline_compute_grow_one, None);
         self.device.destroy_pipeline(self.data.pipeline_compute_grow_two, None);
         self.device.destroy_pipeline(self.data.pipeline_compute_grow_three, None);
-        self.device.destroy_pipeline(self.data.pipeline_compute_combine, None);
+        self.device.destroy_pipeline(self.data.pipeline_compute_mempos, None);
 
         self.device.destroy_pipeline_layout(self.data.pipeline_layout, None);
         self.device.destroy_render_pass(self.data.render_pass, None);
@@ -897,13 +905,13 @@ unsafe fn create_pipeline(device: &Device, data: &mut app_data::AppData) -> Resu
         .name(b"main\0");
 
     // load the byte data
-    let compute_bytes = include_bytes!("../shaders/compiled/rt_compute_combine.spv");
+    let compute_bytes = include_bytes!("../shaders/compiled/rt_compute_mempos.spv");
     // create the shaders
-    let compute_shader_module_combine = create_shader_module(device, &compute_bytes[..])?;
+    let compute_shader_module_mempos = create_shader_module(device, &compute_bytes[..])?;
     //create the shader stage for the compute shader
-    let compute_stage_combine = vk::PipelineShaderStageCreateInfo::builder()
+    let compute_stage_mempos = vk::PipelineShaderStageCreateInfo::builder()
         .stage(vk::ShaderStageFlags::COMPUTE)
-        .module(compute_shader_module_combine)
+        .module(compute_shader_module_mempos)
         .name(b"main\0");
 
     // define input assembly and object type. This is altered when using geometry shader
@@ -1062,11 +1070,11 @@ unsafe fn create_pipeline(device: &Device, data: &mut app_data::AppData) -> Resu
         .stage(compute_stage_grow_three)
         .layout(data.pipeline_layout);
 
-    let info_compute_combine = vk::ComputePipelineCreateInfo::builder()
-        .stage(compute_stage_combine)
+    let info_compute_mempos = vk::ComputePipelineCreateInfo::builder()
+        .stage(compute_stage_mempos)
         .layout(data.pipeline_layout);
 
-    let compute_pipelines = device.create_compute_pipelines(vk::PipelineCache::null(), &[info_compute_rasterize, info_compute_grow_one, info_compute_grow_two, info_compute_grow_three, info_compute_combine], None)?.0;
+    let compute_pipelines = device.create_compute_pipelines(vk::PipelineCache::null(), &[info_compute_rasterize, info_compute_grow_one, info_compute_grow_two, info_compute_grow_three, info_compute_mempos], None)?.0;
 
     data.pipeline_cube = pipelines[0];
     data.pipeline_cuboid = pipelines[1];
@@ -1076,7 +1084,7 @@ unsafe fn create_pipeline(device: &Device, data: &mut app_data::AppData) -> Resu
     data.pipeline_compute_grow_one = compute_pipelines[1];
     data.pipeline_compute_grow_two = compute_pipelines[2];
     data.pipeline_compute_grow_three = compute_pipelines[3];
-    data.pipeline_compute_combine = compute_pipelines[4];
+    data.pipeline_compute_mempos = compute_pipelines[4];
 
     device.destroy_shader_module(vert_shader_module_cube, None);
     device.destroy_shader_module(geo_shader_module_cube, None);
@@ -1093,7 +1101,7 @@ unsafe fn create_pipeline(device: &Device, data: &mut app_data::AppData) -> Resu
     device.destroy_shader_module(compute_shader_module_grow_one, None);
     device.destroy_shader_module(compute_shader_module_grow_two, None);
     device.destroy_shader_module(compute_shader_module_grow_three, None);
-    device.destroy_shader_module(compute_shader_module_combine, None);
+    device.destroy_shader_module(compute_shader_module_mempos, None);
 
     Ok(())
 }
diff --git a/src/scene/empty_volume.rs b/src/scene/empty_volume.rs
index 36e3a1f..00ee843 100644
--- a/src/scene/empty_volume.rs
+++ b/src/scene/empty_volume.rs
@@ -13,6 +13,7 @@ use crate::scene::oct_tree::OctTree;
 use super::memorizable::Memorizable;
 use super::light::LightSource;
 use super::light::PointLight;
+use super::volumetrics::ShapeComposition;
 use super::AppData;
 use super::LightsIter;
 use super::Scene;
@@ -1063,10 +1064,10 @@ impl EmptyVolume {
 
         let mut out_index = vec![];
         for index in 0..weighted_indices.len() {
-            out_index.push(weighted_indices[weighted_indices.len() - (index + 1)].1 as u32);
             if out_index.len() == light_number as usize {
                 break;
             }
+            out_index.push(weighted_indices[weighted_indices.len() - (index + 1)].1 as u32);
         }
         while out_index.len() < light_number as usize {
             out_index.push(0);
@@ -1074,6 +1075,31 @@ impl EmptyVolume {
         out_index
     }
 
+    pub fn select_compounds(&self, compounds: &Vec<Rc<RefCell<ShapeComposition>>>, compound_number: u32) -> Vec<u32> {
+        let mut weighted_indices = vec![];
+        for compound in compounds {
+            let bbox_low = compound.borrow().bbox_low;
+            let bbox_high = compound.borrow().bbox_high;
+            let diag = bbox_high - bbox_low;
+            if (self.real_position.x < bbox_high.x || self.real_position.y < bbox_high.y || self.real_position.z < bbox_high.z) && (bbox_low.x < self.real_position.x + self.size_x as f32 || bbox_low.y < self.real_position.y + self.size_y as f32 || bbox_low.z < self.real_position.z + self.size_z as f32) {
+                let le = diag.dot(diag);
+                weighted_indices.push((le, compound.borrow().get_memory_start()));
+            }
+        }
+        weighted_indices.sort_by(|a, b| a.0.partial_cmp(&b.0).unwrap());
+        let mut out_index = vec![];
+        for index in 0..weighted_indices.len() {
+            if out_index.len() == compound_number as usize {
+                break;
+            }
+            out_index.push(weighted_indices[weighted_indices.len() - (index + 1)].1 as u32);
+        }
+        while out_index.len() < compound_number as usize {
+            out_index.push(0);
+        }
+        out_index
+    }
+
     pub fn combine_results(first: &Rc<RefCell<OctTree<Cube>>>,first_neighbors: &Rc<OctTree<Rc<RefCell<EmptyVolume>>>>, second: &Rc<RefCell<OctTree<Cube>>>, second_neighbors: &Rc<OctTree<Rc<RefCell<EmptyVolume>>>>, facing: vertex::Facing) {
         let mut first_start;
         let mut second_start;
@@ -1261,6 +1287,7 @@ impl Memorizable for EmptyVolume {
         mem_size += 12; //color/roughness buffer sizes, 2 values each
         mem_size += 12; //neighbor buffer sizes, 2 values each
         mem_size += 1; //scale of the volume, 1 float
+        mem_size += data.num_compound_per_volume; // compound references
 
         // this covers full color and roughness
         mem_size += (self.color_top.len() as u32).max(1);
@@ -1296,12 +1323,20 @@ impl Memorizable for EmptyVolume {
         mem_index += 1;
         v[mem_index] = self.size_z as u32;
         mem_index += 1;
-        //Todo: insert lights
+        //insert lights
         let selected_lights = self.select_lights(scene.get_light_iter(), data.num_lights_per_volume, data.min_light_weight);
         for light in selected_lights {
             v[mem_index] = light;
             mem_index += 1;
         }
+
+        // compound references
+        let selected_compounds = self.select_compounds(&scene.volumetrics, data.num_compound_per_volume);
+        for compound in selected_compounds {
+            v[mem_index] = compound;
+            mem_index += 1;
+        }
+
         //color/roughness buffer sizes, 2 values each
         if self.color_top.len() > 1 {
             v[mem_index] = self.size_x as u32;
diff --git a/src/scene/generators.rs b/src/scene/generators.rs
index 3b7f372..eca7594 100644
--- a/src/scene/generators.rs
+++ b/src/scene/generators.rs
@@ -57,7 +57,7 @@ pub fn generate_test_scene(scene: &mut Scene, data: &mut AppData) -> Result<(Poi
     let shade = (rng.gen_range(0..25) as f32) / 100.0;
     let cube = Cube {
         pos: vec3(10.0, 10.0, 10.0),
-        color: vec3(0.0, 0.0, 0.9),
+        color: vec3(0.9, 0.9, 0.9),
         tex_coord: vec2(0.0, 0.0),
         transparent: true,
         roughness: 32,
@@ -66,7 +66,7 @@ pub fn generate_test_scene(scene: &mut Scene, data: &mut AppData) -> Result<(Poi
 
     let cube = Cube {
         pos: vec3(10.0, 10.0, 9.0),
-        color: vec3(0.0, 0.0, 0.9),
+        color: vec3(0.9, 0.9, 0.9),
         tex_coord: vec2(0.0, 0.0),
         transparent: true,
         roughness: 32,
@@ -93,8 +93,8 @@ pub fn generate_test_scene(scene: &mut Scene, data: &mut AppData) -> Result<(Poi
     oct_tree2.set_cube(cube.clone());
 
     scene.point_lights.push(Rc::new(RefCell::new(PointLight::init(vec3(11.0 + grid_size as f32, 11.0 + grid_size as f32, 11.0) * scale, vec3(2.0, 2.0, 2.0)))));
-    scene.point_lights.push(Rc::new(RefCell::new(PointLight::init(vec3(9.0 + grid_size as f32, 9.0 + grid_size as f32, 11.0) * scale, vec3(0.5, 0.5, 0.5)))));
-    scene.directional_lights.push(Rc::new(RefCell::new(DirectionalLight::init(vec3(1.0, 1.0, -1.0), vec3(0.1, 0.1, 0.1)))));
+    //scene.point_lights.push(Rc::new(RefCell::new(PointLight::init(vec3(9.0 + grid_size as f32, 9.0 + grid_size as f32, 11.0) * scale, vec3(0.5, 0.5, 0.5)))));
+    //scene.directional_lights.push(Rc::new(RefCell::new(DirectionalLight::init(vec3(1.0, 1.0, -1.0), vec3(0.1, 0.1, 0.1)))));
 
     let cube = Cuboid {
         pos: vec3(11.0 + grid_size as f32, 11.0 + grid_size as f32, 11.0) * scale,
@@ -112,13 +112,16 @@ pub fn generate_test_scene(scene: &mut Scene, data: &mut AppData) -> Result<(Poi
         size: Vector3 {x: 0.5, y: 0.5, z: 0.5} * scale
     };
     let index = scene.sized_vertices.len();
-    cube.draw(&data.topology, index, scene);
+    //cube.draw(&data.topology, index, scene);
 
     let tree_ref_one = Rc::new(RefCell::new(oct_tree1.clone()));
     let tree_ref_two = Rc::new(RefCell::new(oct_tree2.clone()));
-    scene.oct_trees = vec![vec![vec![tree_ref_two.clone(), tree_ref_two.clone(), tree_ref_two.clone()], vec![tree_ref_two.clone(), tree_ref_one.clone(), tree_ref_two.clone()], vec![tree_ref_two.clone(), tree_ref_two.clone(), tree_ref_two.clone()]], vec![vec![tree_ref_two.clone(), tree_ref_two.clone(), tree_ref_two.clone()], vec![tree_ref_two.clone(), tree_ref_one.clone(), tree_ref_two.clone()], vec![tree_ref_two.clone(), tree_ref_two.clone(), tree_ref_two.clone()]]];
+    //scene.oct_trees = vec![vec![vec![tree_ref_two.clone(), tree_ref_two.clone(), tree_ref_two.clone()], vec![tree_ref_two.clone(), tree_ref_one.clone(), tree_ref_two.clone()], vec![tree_ref_two.clone(), tree_ref_two.clone(), tree_ref_two.clone()]], vec![vec![tree_ref_two.clone(), tree_ref_two.clone(), tree_ref_two.clone()], vec![tree_ref_two.clone(), tree_ref_one.clone(), tree_ref_two.clone()], vec![tree_ref_two.clone(), tree_ref_two.clone(), tree_ref_two.clone()]]];
+    scene.oct_trees = vec![vec![vec![tree_ref_two.clone(), tree_ref_two.clone(), tree_ref_two.clone()], vec![tree_ref_two.clone(), tree_ref_one.clone(), tree_ref_two.clone()], vec![tree_ref_two.clone(), tree_ref_two.clone(), tree_ref_two.clone()]]];
 
     let mut comp = ShapeComposition::new(64);
+    //comp.included_shapes.push(Rc::new(RefCell::new(Rect::new(Vector3 { x: 5.0 + grid_size as f32, y: 5.0 + grid_size as f32, z: 10.0 }, Vector3 { x: 0.0, y: 0.0, z: 0.0 }, Vector3 { x: 5.0, y: 5.0, z: 5.0 },Vector3 { x: 0, y: 0, z: 255 }, 64, false))));
+
     comp.included_shapes.push(Rc::new(RefCell::new(Sphere::new(Vector3 { x: 5.0 + grid_size as f32, y: 5.0 + grid_size as f32, z: 10.0 }, Vector3 { x: 0.0, y: 0.0, z: 0.0 }, 2.0, Vector3 { x: 0, y: 255, z: 0 }, 64, false))));
     comp.included_shapes.push(Rc::new(RefCell::new(Sphere::new(Vector3 { x: 5.0 + grid_size as f32, y: 5.0 + grid_size as f32, z: 10.0 }, Vector3 { x: 0.0, y: 0.0, z: 0.0 }, 2.5, Vector3 { x: 255, y: 0, z: 0 }, 64, false))));
     comp.excluded_shapes.push(Rc::new(RefCell::new(Sphere::new(Vector3 { x: 5.0 + grid_size as f32, y: 5.0 + grid_size as f32, z: 11.5 }, Vector3 { x: 0.0, y: 0.0, z: 0.0 }, 1.5, Vector3 { x: 0, y: 255, z: 0 }, 64, false))));    
@@ -127,12 +130,12 @@ pub fn generate_test_scene(scene: &mut Scene, data: &mut AppData) -> Result<(Poi
     let mut comp = ShapeComposition::new(64);
     comp.included_shapes.push(Rc::new(RefCell::new(Cone::new(Vector3 { x: 20.0 + grid_size as f32, y: 5.0 + grid_size as f32, z: 10.0 }, Vector3 { x: 0.0, y: 0.0, z: 0.0 }, 0.0, 2.5, Vector3 { x: 0.0, y: 10.0, z: 0.0 },Vector3 { x: 0, y: 255, z: 0 }, 64, false))));
     comp.excluded_shapes.push(Rc::new(RefCell::new(Cone::new(Vector3 { x: 20.0 + grid_size as f32, y: 5.0 + grid_size as f32, z: 10.0 }, Vector3 { x: 0.0, y: 0.0, z: 0.0 }, 0.0, 1.5, Vector3 { x: 0.0, y: 10.0, z: 0.0 },Vector3 { x: 0, y: 255, z: 0 }, 64, false))));
-    scene.volumetrics.push(Rc::new(RefCell::new(comp)));
+    //scene.volumetrics.push(Rc::new(RefCell::new(comp)));
 
     let mut comp = ShapeComposition::new(64);
     comp.included_shapes.push(Rc::new(RefCell::new(Rect::new(Vector3 { x: -5.0 + grid_size as f32, y: 5.0 + grid_size as f32, z: 10.0 }, Vector3 { x: 0.0, y: 0.0, z: 0.0 }, Vector3 { x: 5.0, y: 10.0, z: 2.0 },Vector3 { x: 0, y: 0, z: 255 }, 64, false))));
     comp.excluded_shapes.push(Rc::new(RefCell::new(Rect::new(Vector3 { x: -5.0 + grid_size as f32, y: 5.0 + grid_size as f32, z: 10.0 }, Vector3 { x: 0.0, y: 0.0, z: 0.0 }, Vector3 { x: 3.0, y: 8.0, z: 2.0 },Vector3 { x: 0, y: 0, z: 255 }, 64, false))));
-    scene.volumetrics.push(Rc::new(RefCell::new(comp)));
+    //scene.volumetrics.push(Rc::new(RefCell::new(comp)));
 
     Ok((cgmath::point3(5.0, 5.0, 10.0)))
 }
diff --git a/src/scene/mod.rs b/src/scene/mod.rs
index 6fc3b0c..395271d 100644
--- a/src/scene/mod.rs
+++ b/src/scene/mod.rs
@@ -181,18 +181,39 @@ impl Scene {
 
     pub fn update_memory(&mut self, data: &mut AppData, reuse_memory: bool) {
         // reuse_memory controls whether a fresh data vector is created or the existing one is used if it is the right size
-        let mut memory_index = 6; 
+        let mut memory_index = 7; 
         // 0 - location for the maximum number of lights referenced per chunk (also will be the invalid memory allocation for pointing to a nonexistant neighbor)
         // 1 - location for the max iterations per light
         // 2 - diffuse raster samples (2*n + 1) * (2*n + 1) so as to always have at least the central fragment covered
         // 3 - diffuse raster size
         // 4 - max recursive rays
         // 5 - diffuse rays per hit
+        // 6 - maximum number of compounds per light
         for memorizable in &self.memorizables {
             memorizable.borrow_mut().set_memory_start(memory_index);
             memory_index += memorizable.borrow_mut().get_buffer_mem_size(data) as usize;
         }
 
+        let mut compound_data_len = 1;
+        for compound in &self.volumetrics {
+            compound.borrow_mut().set_memory_start(compound_data_len);
+            compound_data_len += compound.borrow().get_compound_buffer_mem_size(data) as usize;
+        }
+        let mut volumetrics_memory = vec![compound_data_len as u32; compound_data_len];
+
+        let mut compute_task_one_size = 0;
+        let mut compute_task_one_out_size = 0;
+        let mut target_index = 1;
+        let mut node_count = 0;
+        for compound in &self.volumetrics {
+            compound.borrow_mut().target_memory_start = target_index;
+            target_index += compound.borrow().get_target_buffer_mem_size();
+            node_count += compound.borrow().get_num_nodes();
+            volumetrics_memory = compound.borrow_mut().insert_into_memory(volumetrics_memory, data, &self);
+            compute_task_one_size += compound.borrow().size.pow(2) as usize;
+            compute_task_one_out_size += compound.borrow().size.pow(3) as usize;
+        }
+
         //println!("Memory size is {} kB, max indes is {}", memory_index * 32 / 8 /1024 + 1, memory_index);
         let mut volume_vec;
         let needs_overwrite;
@@ -203,11 +224,13 @@ impl Scene {
             needs_overwrite = false;
             volume_vec = self.rt_memory.clone();
         }
+        volume_vec[0] = data.num_lights_per_volume;
         volume_vec[1] = data.max_iterations_per_light;
         volume_vec[2] = data.diffuse_raster_steps;
         volume_vec[3] = u32::from_ne_bytes(data.diffuse_raster_size.to_ne_bytes());
         volume_vec[4] = data.max_recursive_rays;
         volume_vec[5] = data.diffuse_rays_per_hit;
+        volume_vec[6] = data.num_compound_per_volume;
         
         for memorizable in &self.memorizables {
             if needs_overwrite || memorizable.borrow().is_dirty() {
@@ -218,26 +241,13 @@ impl Scene {
         self.rt_memory = volume_vec;
         data.scene_rt_memory_size = (self.rt_memory.len() * 4) as u64; // size of the needed buffer size in bytes
 
-        let mut data_len = 0;
-        for compound in &self.volumetrics {
-            compound.borrow_mut().set_memory_start(data_len);
-            data_len += compound.borrow().get_compound_buffer_mem_size(data) as usize;
-        }
-        let mut volumetrics_memory = vec![0; data_len];
-
-        let mut compute_task_one_size = 0;
-        let mut compute_task_one_out_size = 0;
-        for compound in &self.volumetrics {
-            volumetrics_memory = compound.borrow_mut().insert_into_memory(volumetrics_memory, data, &self);
-            compute_task_one_size += compound.borrow().size.pow(2) as usize;
-            compute_task_one_out_size += compound.borrow().size.pow(3) as usize;
-        }
-
         self.volumetrics_memory = volumetrics_memory;
         data.scene_rt_volumetric_size = (self.volumetrics_memory.len() * 4) as u64; // size of the needed buffer size in bytes
         data.compute_task_one_size = compute_task_one_size;
         data.compute_task_one_out_buffer_size = (compute_task_one_out_size * 4) as u64;
         data.compute_task_one_out_size = compute_task_one_out_size as u64;
+        data.compute_task_oct_tree_size = target_index as u64;
+        data.compute_task_oct_tree_nodes = (node_count) as u64;
     }
 
     pub unsafe fn destroy(&mut self, device: &vulkanalia::Device) {
diff --git a/src/scene/volumetrics/mod.rs b/src/scene/volumetrics/mod.rs
index 8e7ade9..cf72f67 100644
--- a/src/scene/volumetrics/mod.rs
+++ b/src/scene/volumetrics/mod.rs
@@ -31,16 +31,19 @@ enum ShapeTypes {
 #[derive(Clone, Debug)]
 pub struct ShapeComposition {
     memory_start: usize,
+    pub target_memory_start: u32,
     prev_memory_size: u32,
     pub size: u32,
     pub included_shapes: Vec<Rc<RefCell<dyn Volumetrics>>>,
     pub excluded_shapes: Vec<Rc<RefCell<dyn Volumetrics>>>,
     dirty: bool,
+    pub bbox_low: Vector3<f32>,
+    pub bbox_high: Vector3<f32>,
 }
 
 impl ShapeComposition {
     pub fn new(size: u32) -> Self {
-        Self { memory_start: 0, prev_memory_size: 0, size: size, included_shapes: vec![], excluded_shapes: vec![], dirty: true }
+        Self { memory_start: 0, target_memory_start: 0, prev_memory_size: 0, size: size, included_shapes: vec![], excluded_shapes: vec![], dirty: true, bbox_low: Vector3 { x: 0.0, y: 0.0, z: 0.0 }, bbox_high: Vector3 { x: 0.0, y: 0.0, z: 0.0 } }
     }
 }
 
@@ -60,7 +63,7 @@ impl CompoundMemorizable for ShapeComposition {
 
 impl Memorizable for ShapeComposition {
     fn get_buffer_mem_size(&self, data: &AppData) -> u32 {
-        //size, scale, memory_end, num_included, num_excluded, pos, wrapping address, included_address, excluded_address
+        //size, scale, memory_end, num_included, num_excluded, pos, target address, included_address, excluded_address
         1 + 1 + 1 + 1 + 1 + 3 + 1 + self.included_shapes.len() as u32 + self.excluded_shapes.len() as u32
     }
 
@@ -117,6 +120,8 @@ impl Memorizable for ShapeComposition {
         }
 
         let bbox_high_pos_ind = bbox_high - bbox_low;
+        self.bbox_low = bbox_low;
+        self.bbox_high = bbox_high;
         let scale = bbox_high_pos_ind.x.max(bbox_high_pos_ind.y.max(bbox_high_pos_ind.z)) / (self.size as f32);
 
         v[self.memory_start + 1] = u32::from_ne_bytes(scale.to_ne_bytes());
@@ -126,7 +131,7 @@ impl Memorizable for ShapeComposition {
         v[self.memory_start + 5] = u32::from_ne_bytes(bbox_low.x.to_ne_bytes());
         v[self.memory_start + 6] = u32::from_ne_bytes(bbox_low.y.to_ne_bytes());
         v[self.memory_start + 7] = u32::from_ne_bytes(bbox_low.z.to_ne_bytes());
-        v[self.memory_start + 8] = 0; //TODO add wrapping reference
+        v[self.memory_start + 8] = self.target_memory_start as u32;
 
         self.prev_memory_size = self.get_compound_buffer_mem_size(data);
         self.dirty = false;
@@ -142,6 +147,24 @@ impl Memorizable for ShapeComposition {
     }
 }
 
+impl ShapeComposition {
+    pub fn get_num_nodes(&self) -> u32 {
+        let mut nodes = 0;
+        let mut add_size = 1;
+        let mut size = self.size;
+        while  size >= 2 {
+            nodes += add_size;
+            add_size *= 8;
+            size /= 2;
+        }
+        nodes
+    }
+
+    pub fn get_target_buffer_mem_size(&self) -> u32 {
+        self.get_num_nodes() * 9
+    }
+}
+
 #[derive(Clone, Debug, PartialEq)]
 pub struct Sphere {
     pos: Vector3<f32>,