#version 450 layout(binding = 0) uniform UniformBufferObject { mat4 model; mat4 geom_rot; mat4 view; mat4 proj; vec3 camera_pos; bool[16] use_geom_shader; } ubo; layout(binding = 3) readonly buffer SceneInfoBuffer { uint compounds[]; }; layout(binding = 4) buffer SceneInfoBuffer2 { uint grid[]; }; layout(binding = 5) buffer SizedVertices { float vertices[]; }; layout(binding = 6) buffer Indices { uint indices[]; }; layout(binding = 9) buffer transparencies { bool transparent_grid[]; }; layout (local_size_x = 16, local_size_y = 1, local_size_z = 1) in; uvec4 unpack_color(uint val) { // left most 8 bits first uint val1 = (val >> 24); uint val2 = (val << 8) >> 24; uint val3 = (val << 16) >> 24; uint val4 = (val << 24) >> 24; return uvec4(val4, val3, val2, val1); } void add_cube(uint cube_num, float scale, vec3 pos, vec3 color) { // add node info for the cube //vertice 0 vertices[(cube_num * 8 + 0) * 11 + 0] = pos.x - 0.5 * scale; vertices[(cube_num * 8 + 0) * 11 + 1] = pos.y + 0.5 * scale; vertices[(cube_num * 8 + 0) * 11 + 2] = pos.z + 0.5 * scale; vertices[(cube_num * 8 + 0) * 11 + 3] = color.x; vertices[(cube_num * 8 + 0) * 11 + 4] = color.y; vertices[(cube_num * 8 + 0) * 11 + 5] = color.z; //vertice 1 vertices[(cube_num * 8 + 1) * 11 + 0] = pos.x + 0.5 * scale; vertices[(cube_num * 8 + 1) * 11 + 1] = pos.y + 0.5 * scale; vertices[(cube_num * 8 + 1) * 11 + 2] = pos.z + 0.5 * scale; vertices[(cube_num * 8 + 1) * 11 + 3] = color.x; vertices[(cube_num * 8 + 1) * 11 + 4] = color.y; vertices[(cube_num * 8 + 1) * 11 + 5] = color.z; //vertice 2 vertices[(cube_num * 8 + 2) * 11 + 0] = pos.x - 0.5 * scale; vertices[(cube_num * 8 + 2) * 11 + 1] = pos.y - 0.5 * scale; vertices[(cube_num * 8 + 2) * 11 + 2] = pos.z + 0.5 * scale; vertices[(cube_num * 8 + 2) * 11 + 3] = color.x; vertices[(cube_num * 8 + 2) * 11 + 4] = color.y; vertices[(cube_num * 8 + 2) * 11 + 5] = color.z; //vertice 3 vertices[(cube_num * 8 + 3) * 11 + 0] = pos.x + 0.5 * scale; vertices[(cube_num * 8 + 3) * 11 + 1] = pos.y - 0.5 * scale; vertices[(cube_num * 8 + 3) * 11 + 2] = pos.z + 0.5 * scale; vertices[(cube_num * 8 + 3) * 11 + 3] = color.x; vertices[(cube_num * 8 + 3) * 11 + 4] = color.y; vertices[(cube_num * 8 + 3) * 11 + 5] = color.z; //vertice 4 vertices[(cube_num * 8 + 4) * 11 + 0] = pos.x - 0.5 * scale; vertices[(cube_num * 8 + 4) * 11 + 1] = pos.y + 0.5 * scale; vertices[(cube_num * 8 + 4) * 11 + 2] = pos.z - 0.5 * scale; vertices[(cube_num * 8 + 4) * 11 + 3] = color.x; vertices[(cube_num * 8 + 4) * 11 + 4] = color.y; vertices[(cube_num * 8 + 4) * 11 + 5] = color.z; //vertice 5 vertices[(cube_num * 8 + 5) * 11 + 0] = pos.x + 0.5 * scale; vertices[(cube_num * 8 + 5) * 11 + 1] = pos.y + 0.5 * scale; vertices[(cube_num * 8 + 5) * 11 + 2] = pos.z - 0.5 * scale; vertices[(cube_num * 8 + 5) * 11 + 3] = color.x; vertices[(cube_num * 8 + 5) * 11 + 4] = color.y; vertices[(cube_num * 8 + 5) * 11 + 5] = color.z; //vertice 6 vertices[(cube_num * 8 + 6) * 11 + 0] = pos.x - 0.5 * scale; vertices[(cube_num * 8 + 6) * 11 + 1] = pos.y - 0.5 * scale; vertices[(cube_num * 8 + 6) * 11 + 2] = pos.z - 0.5 * scale; vertices[(cube_num * 8 + 6) * 11 + 3] = color.x; vertices[(cube_num * 8 + 6) * 11 + 4] = color.y; vertices[(cube_num * 8 + 6) * 11 + 5] = color.z; //vertice 7 vertices[(cube_num * 8 + 7) * 11 + 0] = pos.x + 0.5 * scale; vertices[(cube_num * 8 + 7) * 11 + 1] = pos.y - 0.5 * scale; vertices[(cube_num * 8 + 7) * 11 + 2] = pos.z - 0.5 * scale; vertices[(cube_num * 8 + 7) * 11 + 3] = color.x; vertices[(cube_num * 8 + 7) * 11 + 4] = color.y; vertices[(cube_num * 8 + 7) * 11 + 5] = color.z; //add indices for the cube //top indices[cube_num * 36 + 0] = cube_num * 8 + 3; indices[cube_num * 36 + 1] = cube_num * 8 + 0; indices[cube_num * 36 + 2] = cube_num * 8 + 2; indices[cube_num * 36 + 3] = cube_num * 8 + 3; indices[cube_num * 36 + 4] = cube_num * 8 + 1; indices[cube_num * 36 + 5] = cube_num * 8 + 0; //bottom indices[cube_num * 36 + 6] = cube_num * 8 + 6; indices[cube_num * 36 + 7] = cube_num * 8 + 4; indices[cube_num * 36 + 8] = cube_num * 8 + 7; indices[cube_num * 36 + 9] = cube_num * 8 + 4; indices[cube_num * 36 + 10] = cube_num * 8 + 5; indices[cube_num * 36 + 11] = cube_num * 8 + 7; //left indices[cube_num * 36 + 12] = cube_num * 8 + 0; indices[cube_num * 36 + 13] = cube_num * 8 + 4; indices[cube_num * 36 + 14] = cube_num * 8 + 2; indices[cube_num * 36 + 15] = cube_num * 8 + 6; indices[cube_num * 36 + 16] = cube_num * 8 + 2; indices[cube_num * 36 + 17] = cube_num * 8 + 4; //right indices[cube_num * 36 + 18] = cube_num * 8 + 1; indices[cube_num * 36 + 19] = cube_num * 8 + 3; indices[cube_num * 36 + 20] = cube_num * 8 + 5; indices[cube_num * 36 + 21] = cube_num * 8 + 5; indices[cube_num * 36 + 22] = cube_num * 8 + 3; indices[cube_num * 36 + 23] = cube_num * 8 + 7; //near indices[cube_num * 36 + 24] = cube_num * 8 + 6; indices[cube_num * 36 + 25] = cube_num * 8 + 3; indices[cube_num * 36 + 26] = cube_num * 8 + 2; indices[cube_num * 36 + 27] = cube_num * 8 + 3; indices[cube_num * 36 + 28] = cube_num * 8 + 6; indices[cube_num * 36 + 29] = cube_num * 8 + 7; //far indices[cube_num * 36 + 30] = cube_num * 8 + 0; indices[cube_num * 36 + 31] = cube_num * 8 + 1; indices[cube_num * 36 + 32] = cube_num * 8 + 4; indices[cube_num * 36 + 33] = cube_num * 8 + 5; indices[cube_num * 36 + 34] = cube_num * 8 + 4; indices[cube_num * 36 + 35] = cube_num * 8 + 1; } void main() { uint index = gl_GlobalInvocationID.x; uint output_offset = 0; uint compound_start = 0; // iterate over the compounds and find the work index inside of it while (index > compounds[compound_start] * compounds[compound_start]) { output_offset += compounds[compound_start] * compounds[compound_start] * compounds[compound_start]; index -= compounds[compound_start] * compounds[compound_start]; compound_start = compounds[compound_start + 2]; } // grid pos in the task uint compound_grid_size = compounds[compound_start]; float compound_scale = uintBitsToFloat(compounds[compound_start + 1]); vec3 mid_offset = vec3(compound_scale * 0.5, compound_scale * 0.5, compound_scale * 0.5); uint y = index % compound_grid_size; uint x = (index - y) / compound_grid_size; vec3 compound_pos = vec3(uintBitsToFloat(compounds[compound_start + 5]), uintBitsToFloat(compounds[compound_start + 6]), uintBitsToFloat(compounds[compound_start + 7])); // iterate upwards along the z axis for (uint z=0; z < compound_grid_size; z++) { // iterate over the included shapes vec3 check_pos = compound_pos + vec3(float(x) * compound_scale, float(y) * compound_scale, float(z) * compound_scale) + mid_offset; uint color_int; uvec4 color_roughness; bool render = false; vec3 color = vec3(0.0, 0.0, 1.0); bool transparent = false; //handle included shapes for (uint o=0; o < compounds[compound_start + 3]; o++) { uint component_index = compounds[compound_start + 9 + o]; uint component_type = compounds[component_index]; vec3 component_pos = vec3(uintBitsToFloat(compounds[component_index + 1]), uintBitsToFloat(compounds[component_index + 2]), uintBitsToFloat(compounds[component_index + 3])); vec3 component_rot = vec3(uintBitsToFloat(compounds[component_index + 4]), uintBitsToFloat(compounds[component_index + 5]), uintBitsToFloat(compounds[component_index + 6])); mat3 component_rot_mat = mat3( vec3(1.0, 0.0, 0.0), vec3(0.0, cos(component_rot.x), sin(component_rot.x)), vec3(0.0, -sin(component_rot.x), cos(component_rot.x)) ) * mat3( vec3(cos(component_rot.y), 0.0, sin(component_rot.y)), vec3(0.0, 1.0, 0.0), vec3(-sin(component_rot.y), 0.0, cos(component_rot.y)) ) * mat3( vec3(cos(component_rot.z), sin(component_rot.z), 0.0), vec3(-sin(component_rot.z), cos(component_rot.y), 0.0), vec3(0.0, 0.0, 1.0) ); color_int = compounds[component_index + 7]; uvec4 component_color = unpack_color(color_int); transparent = compounds[component_index + 8] != 0; if (component_type == 0) { // handle sphere float radius = uintBitsToFloat(compounds[component_index + 9]); render = length(component_pos - check_pos) <= radius; if (render) { color = vec3(float(component_color.x) / 255.0, float(component_color.y) / 255.0, float(component_color.z) / 255.0); break; } continue; } if (component_type == 1) { // handle cone float radius1 = uintBitsToFloat(compounds[component_index + 9]); float radius2 = uintBitsToFloat(compounds[component_index + 10]); vec3 direction = component_rot_mat * vec3(uintBitsToFloat(compounds[component_index + 11]), uintBitsToFloat(compounds[component_index + 12]), uintBitsToFloat(compounds[component_index + 13])); vec3 diff = check_pos - component_pos; float factor = dot(direction, diff) / dot(direction, direction); vec3 n = diff - factor * direction; float radius = radius1 * (1.0 - factor) + radius2 * factor; render = length(n) <= radius && 0 <= factor && factor <= 1.0; if (render) { color = vec3(float(component_color.x) / 255.0, float(component_color.y) / 255.0, float(component_color.z) / 255.0); break; } continue; } if (component_type == 2) { // handle cone vec3 size = vec3(uintBitsToFloat(compounds[component_index + 9]), uintBitsToFloat(compounds[component_index + 10]), uintBitsToFloat(compounds[component_index + 11])); vec3 direction1 = component_rot_mat * vec3(size.x, 0.0, 0.0) / 2.0; vec3 direction2 = component_rot_mat * vec3(0.0, size.y, 0.0) / 2.0; vec3 direction3 = component_rot_mat * vec3(0.0, 0.0, size.z) / 2.0; vec3 diff = check_pos - component_pos; float factor1 = dot(direction1, diff) / dot(direction1, direction1); float factor2 = dot(direction2, diff) / dot(direction2, direction2); float factor3 = dot(direction3, diff) / dot(direction3, direction3); render = (-1.0 <= factor1 && factor1 <= 1.0) && (-1.0 <= factor2 && factor2 <= 1.0) && (-1.0 <= factor3 && factor3 <= 1.0); if (render) { color = vec3(float(component_color.x) / 255.0, float(component_color.y) / 255.0, float(component_color.z) / 255.0); break; } continue; } } //handle excluded shapes for (uint o=0; o < compounds[compound_start + 4]; o++) { uint component_index = compounds[compound_start + 9 + compounds[compound_start + 3] + o]; uint component_type = compounds[component_index]; vec3 component_pos = vec3(uintBitsToFloat(compounds[component_index + 1]), uintBitsToFloat(compounds[component_index + 2]), uintBitsToFloat(compounds[component_index + 3])); vec3 component_rot = vec3(uintBitsToFloat(compounds[component_index + 4]), uintBitsToFloat(compounds[component_index + 5]), uintBitsToFloat(compounds[component_index + 6])); mat3 component_rot_mat = mat3( vec3(1.0, 0.0, 0.0), vec3(0.0, cos(component_rot.x), sin(component_rot.x)), vec3(0.0, -sin(component_rot.x), cos(component_rot.x)) ) * mat3( vec3(cos(component_rot.y), 0.0, sin(component_rot.y)), vec3(0.0, 1.0, 0.0), vec3(-sin(component_rot.y), 0.0, cos(component_rot.y)) ) * mat3( vec3(cos(component_rot.z), sin(component_rot.z), 0.0), vec3(-sin(component_rot.z), cos(component_rot.y), 0.0), vec3(0.0, 0.0, 1.0) ); uvec4 color = unpack_color(compounds[component_index + 7]); if (component_type == 0) { // handle sphere float radius = uintBitsToFloat(compounds[component_index + 9]); render = render && !(length(component_pos - check_pos) <= radius); if (!render) { break; } continue; } if (component_type == 1) { // handle cone float radius1 = uintBitsToFloat(compounds[component_index + 9]); float radius2 = uintBitsToFloat(compounds[component_index + 10]); vec3 direction = component_rot_mat * vec3(uintBitsToFloat(compounds[component_index + 11]), uintBitsToFloat(compounds[component_index + 12]), uintBitsToFloat(compounds[component_index + 13])); vec3 diff = check_pos - component_pos; float factor = dot(direction, diff) / dot(direction, direction); vec3 n = diff - factor * direction; float radius = radius1 * (1.0 - factor) + radius2 * factor; render = render && !(length(n) <= radius && 0 <= factor && factor <= 1.0); if (!render) { break; } continue; } if (component_type == 2) { // handle cone vec3 size = vec3(uintBitsToFloat(compounds[component_index + 9]), uintBitsToFloat(compounds[component_index + 10]), uintBitsToFloat(compounds[component_index + 11])); vec3 direction1 = component_rot_mat * vec3(size.x, 0.0, 0.0) / 2.0; vec3 direction2 = component_rot_mat * vec3(0.0, size.y, 0.0) / 2.0; vec3 direction3 = component_rot_mat * vec3(0.0, 0.0, size.z) / 2.0; vec3 diff = check_pos - component_pos; float factor1 = dot(direction1, diff) / dot(direction1, direction1); float factor2 = dot(direction2, diff) / dot(direction2, direction2); float factor3 = dot(direction3, diff) / dot(direction3, direction3); render = render && !((-1.0 <= factor1 && factor1 <= 1.0) && (-1.0 <= factor2 && factor2 <= 1.0) && (-1.0 <= factor3 && factor3 <= 1.0)); if (!render) { break; } continue; } } if (render) { grid[output_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z] = color_int; transparent_grid[output_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z] = transparent; add_cube(output_offset + index * compound_grid_size + z, compound_scale, check_pos, color); } else { grid[output_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z] = 0; transparent_grid[output_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z] = false; } } }