#version 450 layout(location = 0) in vec2 fragRasterPos; layout(location = 1) flat in uint fragVolumeStart; layout(location = 2) in vec3 origPosition; layout(location = 3) flat in uint facing; layout(location = 4) flat in uvec2 minRasterPos; layout(location = 5) flat in uvec2 maxRasterPos; layout(location = 0) out vec4 outColor; layout(binding = 0) uniform UniformBufferObject { mat4 model; mat4 geom_rot; mat4 view; mat4 proj; vec3 camera_pos; bool[16] use_geom_shader; } ubo; // 0 - location for the maximum number of lights referenced per chunk (also will be the invalid memory allocation for pointing to a nonexistant neighbor) // 1 - location for the max iterations per light // 2 - diffuse raster samples (2*n + 1) * (2*n + 1) so as to always have at least the central fragment covered // 3 - diffuse raster size (float, needs to be decoded) // 4 - max recursive rays // 5 - diffuse rays per hit layout(binding = 2) readonly buffer SceneInfoBuffer{ uint infos[]; } scene_info; layout(binding = 4) buffer SceneInfoBuffer2 { uint infos[]; } scene_info2; uint max_num_lights = scene_info.infos[0]; uint max_iterations_per_light = scene_info.infos[1]; // diffuse raytracing using a quadratic raster of rays int half_diffuse_raster_steps = int(scene_info.infos[2]); float raster_distance = uintBitsToFloat(scene_info.infos[3]); int raster_points = (2 * half_diffuse_raster_steps + 1) * (2 * half_diffuse_raster_steps + 1); float pos_infinity = uintBitsToFloat(0x7F800000); // set limit for maximal iterations uint max_iterations = max_num_lights * max_iterations_per_light * raster_points; uint iteration_num = 0; uvec4 unpack_color(uint val) { // left most 8 bits first uint val1 = (val >> 24); uint val2 = (val << 8) >> 24; uint val3 = (val << 16) >> 24; uint val4 = (val << 24) >> 24; return uvec4(val4, val3, val2, val1); } uint array_descr_offset = 6 + max_num_lights; uint color_array_offset = 24 + 1; uint sample_neighbor_from_scene_info(uint volume_start, uvec2 raster_pos, uint f) { uint array_descr_start = volume_start + array_descr_offset; uint color_array_start = array_descr_start + color_array_offset; uint top_color_size_u = scene_info.infos[array_descr_start]; uint top_color_size_v = scene_info.infos[array_descr_start + 1]; uint bottom_color_size_u = scene_info.infos[array_descr_start + 2]; uint bottom_color_size_v = scene_info.infos[array_descr_start + 3]; uint left_color_size_u = scene_info.infos[array_descr_start + 4]; uint left_color_size_v = scene_info.infos[array_descr_start + 5]; uint right_color_size_u = scene_info.infos[array_descr_start + 6]; uint right_color_size_v = scene_info.infos[array_descr_start + 7]; uint front_color_size_u = scene_info.infos[array_descr_start + 8]; uint front_color_size_v = scene_info.infos[array_descr_start + 9]; uint back_color_size_u = scene_info.infos[array_descr_start + 10]; uint back_color_size_v = scene_info.infos[array_descr_start + 11]; uint top_neighbor_size_u = scene_info.infos[array_descr_start + 12]; uint top_neighbor_size_v = scene_info.infos[array_descr_start + 13]; uint bottom_neighbor_size_u = scene_info.infos[array_descr_start + 14]; uint bottom_neighbor_size_v = scene_info.infos[array_descr_start + 15]; uint left_neighbor_size_u = scene_info.infos[array_descr_start + 16]; uint left_neighbor_size_v = scene_info.infos[array_descr_start + 17]; uint right_neighbor_size_u = scene_info.infos[array_descr_start + 18]; uint right_neighbor_size_v = scene_info.infos[array_descr_start + 19]; uint front_neighbor_size_u = scene_info.infos[array_descr_start + 20]; uint front_neighbor_size_v = scene_info.infos[array_descr_start + 21]; uint back_neighbor_size_u = scene_info.infos[array_descr_start + 22]; uint back_neighbor_size_v = scene_info.infos[array_descr_start + 23]; uint top_color_size = top_color_size_u * top_color_size_v; uint bottom_color_size = bottom_color_size_u * bottom_color_size_v; uint left_color_size = left_color_size_u * left_color_size_v; uint right_color_size = right_color_size_u * right_color_size_v; uint front_color_size = front_color_size_u * front_color_size_v; uint back_color_size = back_color_size_u * back_color_size_v; uint color_array_end = color_array_start + top_color_size + bottom_color_size + left_color_size + right_color_size + front_color_size + back_color_size; uint top_neighbor_size = top_neighbor_size_u * top_neighbor_size_v; uint bottom_neighbor_size = bottom_neighbor_size_u * bottom_neighbor_size_v; uint left_neighbor_size = left_neighbor_size_u * left_neighbor_size_v; uint right_neighbor_size = right_neighbor_size_u * right_neighbor_size_v; uint front_neighbor_size = front_neighbor_size_u * front_neighbor_size_v; uint back_neighbor_size = back_neighbor_size_u * back_neighbor_size_v; // maybe do an array solution for this as well uint array_start = color_array_end + uint(f > 0) * top_neighbor_size + uint(f > 1) * bottom_neighbor_size + uint(f > 2) * left_neighbor_size + uint(f > 3) * right_neighbor_size + uint(f > 4) * front_neighbor_size; uint us[6] = {top_neighbor_size_u, bottom_neighbor_size_u, left_neighbor_size_u, right_neighbor_size_u, front_neighbor_size_u, back_neighbor_size_u}; uint vs[6] = {top_neighbor_size_v, bottom_neighbor_size_v, left_neighbor_size_v, right_neighbor_size_v, front_neighbor_size_v, back_neighbor_size_v}; uint u_size = us[f]; uint v_size = vs[f]; uint value = scene_info.infos[array_start + raster_pos.x * v_size * uint(u_size > 1) + raster_pos.y * uint(v_size > 1)]; return value; } uint sample_neighbor_from_scene_info(uint volume_start, vec2 raster_pos, uint f) { return sample_neighbor_from_scene_info(volume_start, uvec2(uint(floor(raster_pos.x)), uint(floor(raster_pos.y))), f); } uvec4 sample_color_from_scene_info(uint volume_start, uvec2 raster_pos, uint f) { uint array_descr_start = volume_start + array_descr_offset; uint color_array_start = array_descr_start + color_array_offset; uint top_color_size_u = scene_info.infos[array_descr_start]; uint top_color_size_v = scene_info.infos[array_descr_start + 1]; uint bottom_color_size_u = scene_info.infos[array_descr_start + 2]; uint bottom_color_size_v = scene_info.infos[array_descr_start + 3]; uint left_color_size_u = scene_info.infos[array_descr_start + 4]; uint left_color_size_v = scene_info.infos[array_descr_start + 5]; uint right_color_size_u = scene_info.infos[array_descr_start + 6]; uint right_color_size_v = scene_info.infos[array_descr_start + 7]; uint front_color_size_u = scene_info.infos[array_descr_start + 8]; uint front_color_size_v = scene_info.infos[array_descr_start + 9]; uint back_color_size_u = scene_info.infos[array_descr_start + 10]; uint back_color_size_v = scene_info.infos[array_descr_start + 11]; uint top_size = top_color_size_u * top_color_size_v; uint bottom_size = bottom_color_size_u * bottom_color_size_v; uint left_size = left_color_size_u * left_color_size_v; uint right_size = right_color_size_u * right_color_size_v; uint front_size = front_color_size_u * front_color_size_v; uint back_size = back_color_size_u * back_color_size_v; // maybe do an array solution for this as well uint array_start = color_array_start + uint(f > 0) * top_size + uint(f > 1) * bottom_size + uint(f > 2) * left_size + uint(f > 3) * right_size + uint(f > 4) * front_size; uint us[6] = {top_color_size_u, bottom_color_size_u, left_color_size_u, right_color_size_u, front_color_size_u, back_color_size_u}; uint vs[6] = {top_color_size_v, bottom_color_size_v, left_color_size_v, right_color_size_v, front_color_size_v, back_color_size_v}; uint u_size = us[f]; uint v_size = vs[f]; uint value = scene_info.infos[array_start + clamp(raster_pos.x, 0, u_size) * v_size * uint(u_size > 1) + clamp(raster_pos.y, 0, v_size) * uint(v_size > 1)]; return unpack_color(value); } uvec4 sample_color_from_scene_info(uint volume_start, vec2 raster_pos, uint f) { return sample_color_from_scene_info(volume_start, uvec2(uint(floor(raster_pos.x)), uint(floor(raster_pos.y))), f); } vec3 get_light_position(uint light_index) { return vec3(uintBitsToFloat(scene_info.infos[light_index + 1]), uintBitsToFloat(scene_info.infos[light_index + 2]), uintBitsToFloat(scene_info.infos[light_index + 3])); } vec3 get_light_color(uint light_index) { return vec3(float(scene_info.infos[light_index + 4]) / 255.0, float(scene_info.infos[light_index + 5]) / 255.0, float(scene_info.infos[light_index + 6]) / 255.0); } vec3 normal_for_facing(uint facing) { if (facing == 0) { return vec3(0.0, 0.0, -1.0); } if (facing == 1) { return vec3(0.0, 0.0, 1.0); } if (facing == 2) { return vec3(1.0, 0.0, 0.0); } if (facing == 3) { return vec3(-1.0, 0.0, 0.0); } if (facing == 4) { return vec3(0.0, 1.0, 0.0); } if (facing == 5) { return vec3(0.0, -1.0, 0.0); } return vec3(0.0, 0.0, 0.0); } vec3 reflect_vector(vec3 direction, uint facing) { vec3 normal = normal_for_facing(facing); return direction - 2.0 * dot(direction, normal) * normal; } struct Tracing { vec3 end_pos; uvec4 end_color; uint end_volume; uint end_facing; float end_factor; uint end_cycle; bool has_hit; vec3 color_mul; uvec2 end_raster; vec3 end_direction; bool has_transparent_hit; }; Tracing trace_ray(uint volume_start, vec3 starting_pos, vec3 start_direction, float start_max_factor, bool allow_reflect) { vec3 direction = start_direction; float max_factor = start_max_factor; vec3 pos = starting_pos; // setup volume info uint volume_index = volume_start; float volume_scale = uintBitsToFloat(scene_info.infos[volume_index + array_descr_offset + color_array_offset - 1]); float volume_pos_x = uintBitsToFloat(scene_info.infos[volume_index + 0]); float volume_pos_y = uintBitsToFloat(scene_info.infos[volume_index + 1]); float volume_pos_z = uintBitsToFloat(scene_info.infos[volume_index + 2]); bool x_pos = direction.x > 0.0; bool x_null = (direction.x == 0.0); bool y_pos = direction.y > 0.0; bool y_null = (direction.y == 0.0); bool z_pos = direction.z > 0.0; bool z_null = (direction.z == 0.0); // default is max factor, that way we avoid collision when going parallel to an axis. The other directions will score a hit float x_factor = max_factor; float y_factor = max_factor; float z_factor = max_factor; Tracing result; result.has_hit = false; result.has_transparent_hit = false; result.color_mul = vec3(1.0, 1.0, 1.0); // intermediate storage for transparent hit values vec3 end_pos_transparent; uvec4 end_color_transparent; uint end_volume_transparent; uint end_facing_transparent; uvec2 end_raster_transparent; vec3 color_mul_transparent; while (iteration_num < max_iterations) { iteration_num ++; float x_border = volume_pos_x + float((scene_info.infos[volume_index + 3]) * uint(x_pos)) * volume_scale - 0.5 * volume_scale; float y_border = volume_pos_y + float((scene_info.infos[volume_index + 4]) * uint(y_pos)) * volume_scale - 0.5 * volume_scale; float z_border = volume_pos_z + float((scene_info.infos[volume_index + 5]) * uint(z_pos)) * volume_scale - 0.5 * volume_scale; bool needs_next_light = false; if (!x_null) { x_factor = (x_border - pos.x) / direction.x; } if (!y_null) { y_factor = (y_border - pos.y) / direction.y; } if (!z_null) { z_factor = (z_border - pos.z) / direction.z; } if ((x_factor >= max_factor) && (y_factor >= max_factor) && (z_factor >= max_factor)) { // no hit, finish tracking break; } else { // if there is a border hit before reaching the end // change to the relevant next volume // Todo: look into removing ifs from this uint hit_facing = 0; uint u = 0; uint v = 0; bool is_x_smallest = x_factor < y_factor && x_factor < z_factor; bool is_y_smallest = y_factor < x_factor && y_factor < z_factor; bool is_z_smallest = z_factor <= x_factor && z_factor <= y_factor; hit_facing = uint(is_x_smallest) * (2 + uint(x_pos)) + uint(is_y_smallest) * (4 + uint(y_pos)) + uint(is_z_smallest && !z_pos); float smallest_factor = min(min(x_factor, y_factor), z_factor); // maybe use multiplication instead? vec3 intersection_pos = pos + smallest_factor * direction; u = uint(is_x_smallest) * (uint(round((intersection_pos.y - volume_pos_y) / volume_scale))) + uint(is_y_smallest || is_z_smallest) * (uint(round((intersection_pos.x - volume_pos_x) / volume_scale))); v = uint(is_x_smallest || is_y_smallest) * (uint(round((intersection_pos.z - volume_pos_z) / volume_scale))) + uint(is_z_smallest) * (uint(round((intersection_pos.y - volume_pos_y) / volume_scale))); uint next_neighbor = sample_neighbor_from_scene_info(volume_index, uvec2(u, v), hit_facing); uvec4 color_sample = sample_color_from_scene_info(volume_index, uvec2(u, v), hit_facing); if (color_sample.xyz == uvec3(0, 0, 0)) { // not a color hit, so check neighbor if (next_neighbor != 0) { volume_index = next_neighbor; volume_scale = uintBitsToFloat(scene_info.infos[volume_index + array_descr_offset + color_array_offset - 1]); volume_pos_x = uintBitsToFloat(scene_info.infos[volume_index + 0]); volume_pos_y = uintBitsToFloat(scene_info.infos[volume_index + 1]); volume_pos_z = uintBitsToFloat(scene_info.infos[volume_index + 2]); } else { // neighbor miss end_color_transparent = uvec4(255, 0, 0, 255); result.end_color = uvec4(255, 0, 0, 255); break; } } else { if (next_neighbor != 0) { // transparent hit, move on but change the color end_volume_transparent = volume_index; color_mul_transparent = result.color_mul; volume_index = next_neighbor; volume_scale = uintBitsToFloat(scene_info.infos[volume_index + array_descr_offset + color_array_offset - 1]); volume_pos_x = uintBitsToFloat(scene_info.infos[volume_index + 0]); volume_pos_y = uintBitsToFloat(scene_info.infos[volume_index + 1]); volume_pos_z = uintBitsToFloat(scene_info.infos[volume_index + 2]); result.color_mul = result.color_mul * vec3(float(color_sample.x) / 255.0, float(color_sample.y) / 255.0, float(color_sample.z) / 255.0); result.has_transparent_hit = true; result.end_volume = volume_index; result.end_direction = direction; end_color_transparent = color_sample; end_raster_transparent = uvec2(u, v); end_pos_transparent = intersection_pos; end_facing_transparent = hit_facing; // stop iterating if there is barely anything left to see if (max(result.color_mul.x, max(result.color_mul.y, result.color_mul.z)) < 0.1) { break; } } else { // color hit, either reflect or move on result.end_pos = intersection_pos; result.end_facing = hit_facing; result.end_color = color_sample; result.end_raster = uvec2(u, v); result.has_hit = true; result.end_volume = volume_index; result.end_direction = direction; float reflectivity = 1.0 - float(color_sample.w) / 255.0; vec3 refltective_color_mul = result.color_mul * vec3(float(color_sample.x) / 255.0, float(color_sample.y) / 255.0, float(color_sample.z) / 255.0); vec3 visibility_after_reflection = refltective_color_mul * reflectivity; //break; //max(visibility_after_reflection.x, max(visibility_after_reflection.y, visibility_after_reflection.z)) >= 0.1 && if (max(visibility_after_reflection.x, max(visibility_after_reflection.y, visibility_after_reflection.z)) >= 0.1 && allow_reflect) { // do reflect direction = reflect_vector(direction, hit_facing); pos = intersection_pos; //max_factor -= smallest_factor; x_pos = direction.x > 0.0; x_null = (direction.x == 0.0); y_pos = direction.y > 0.0; y_null = (direction.y == 0.0); z_pos = direction.z > 0.0; z_null = (direction.z == 0.0); } else { break; } } } } } result.end_factor = min(min(x_factor, y_factor), z_factor); result.end_cycle = iteration_num; // in case we have a transparent hit but no hit afterwards if (!result.has_hit && result.has_transparent_hit) { // did we stop because nothing could be seen through the object? if (max(result.color_mul.x, max(result.color_mul.y, result.color_mul.z)) < 0.1) { // if so count it as a hit and recover the pre transparent color multiplier result.has_hit = true; result.color_mul = color_mul_transparent; } result.end_pos = end_pos_transparent; result.end_color = end_color_transparent; result.end_volume = end_volume_transparent; result.end_facing = end_facing_transparent; result.end_raster = end_raster_transparent; } return result; } vec3 get_lighting_color(uint volume_start, vec3 starting_pos, vec4 orig_color_sample, vec3 normal) { uint light_num = 0; // initialize color vec3 color_sum = vec3(0.0, 0.0, 0.0);// + (orig_color_sample.xyz * 0.005); while (iteration_num < max_iterations) { // setup light info uint light_index = scene_info.infos[volume_start + 6 + light_num]; if (light_index == 0) { // abort if there is no new light break; } vec3 light_direction; float max_factor; if (scene_info.infos[light_index] == 0) { //point light light_direction = get_light_position(light_index) - starting_pos; max_factor = 1.0; } else if (scene_info.infos[light_index] == 1) { // directional light light_direction = -normalize(get_light_position(light_index)); max_factor = pos_infinity; } vec3 light_color = get_light_color(light_index); Tracing result = trace_ray(volume_start, starting_pos, light_direction, max_factor, false); // add result, if there is a hit the null vector will be added color_sum += float(!result.has_hit) * result.color_mul * max(dot(normal, normalize(light_direction)), 0.0) * (orig_color_sample.xyz * light_color) / (length(light_direction) * length(light_direction)); light_num += 1; if (light_num >= max_num_lights) { break; } } return color_sum; } vec3 diffuse_tracing(uint volume_start, uvec2 raster_pos, vec3 pos, uint f) { uvec4 color_roughness = sample_color_from_scene_info(volume_start, raster_pos, f); vec4 orig_color_sample = vec4(float(color_roughness.x) / 255.0, float(color_roughness.y) / 255.0, float(color_roughness.z) / 255.0, 1); vec3 normal = normal_for_facing(f); vec3 color_sum = vec3(0.0, 0.0, 0.0); for (int u_offset = -half_diffuse_raster_steps; u_offset <= half_diffuse_raster_steps; u_offset++) { for (int v_offset = -half_diffuse_raster_steps; v_offset <= half_diffuse_raster_steps; v_offset++) { float x_offset = raster_distance * float(u_offset) * float(f == 0 || f == 1 || f == 4 || f == 5); float y_offset = raster_distance * float(u_offset) * float(f == 2 || f == 3); y_offset += raster_distance * float(v_offset) * float(f == 0 || f == 1); float z_offset = raster_distance * float(v_offset) * float(f == 4 || f == 5 || f == 2 || f == 3); vec3 offset = vec3(x_offset, y_offset, z_offset); color_sum += get_lighting_color(volume_start, pos + offset, orig_color_sample, normal) / float(raster_points); } } return color_sum; } vec3 diffuse_tracing(uint volume_start, vec2 raster_pos, vec3 pos, uint f) { return diffuse_tracing(volume_start, uvec2(uint(floor(raster_pos.x)), uint(floor(raster_pos.y))), pos, f); } vec3 clamp_to_volume(uint volume_start, vec3 position) { float volume_pos_x = uintBitsToFloat(scene_info.infos[volume_start + 0]); float volume_pos_y = uintBitsToFloat(scene_info.infos[volume_start + 1]); float volume_pos_z = uintBitsToFloat(scene_info.infos[volume_start + 2]); float volume_scale = uintBitsToFloat(scene_info.infos[volume_start + array_descr_offset + color_array_offset - 1]); float high_x_border = volume_pos_x + float(scene_info.infos[volume_start + 3]) * volume_scale - 0.501 * volume_scale; float high_y_border = volume_pos_y + float(scene_info.infos[volume_start + 4]) * volume_scale - 0.501 * volume_scale; float high_z_border = volume_pos_z + float(scene_info.infos[volume_start + 5]) * volume_scale - 0.501 * volume_scale; float low_x_border = float(volume_pos_x) - 0.501 * volume_scale; float low_y_border = float(volume_pos_y) - 0.501 * volume_scale; float low_z_border = float(volume_pos_z) - 0.501 * volume_scale; return vec3(min(max(position.x, low_x_border), high_x_border), min(max(position.y, low_y_border), high_y_border), min(max(position.z, low_z_border), high_z_border)); } vec2 clamp_to_quad(vec2 raster_pos, uvec2 min_raster_pos, uvec2 max_raster_pos) { return vec2(max(min_raster_pos.x, min(max_raster_pos.x - 1, raster_pos.x)), max(min_raster_pos.y, min(max_raster_pos.y - 1, raster_pos.y))); } vec3 add_reflection(vec3 view_vector, uint f, uint volume_start, vec3 pos, uvec4 color_sample, vec3 color_sum) { float reflectivity = 1.0 - float(color_sample.w) / 255.0; if (reflectivity > 0.01) { vec3 orig_color_sample = vec3(float(color_sample.x) / 255.0, float(color_sample.y) / 255.0, float(color_sample.z) / 255.0); vec3 reflection_direction = reflect_vector(view_vector, f); Tracing reflection_tracing = trace_ray(volume_start, pos, reflection_direction, pos_infinity, true); if (reflection_tracing.has_hit || reflection_tracing.has_transparent_hit) { vec3 color_from_reflection = diffuse_tracing(reflection_tracing.end_volume, reflection_tracing.end_raster, reflection_tracing.end_pos, reflection_tracing.end_facing) * orig_color_sample; color_sum = color_sum * (1.0 - reflectivity) + color_from_reflection * reflectivity; } } return color_sum; } void main() { vec3 clamped_pos = clamp_to_volume(fragVolumeStart, origPosition); vec2 clamped_raster_pos = clamp_to_quad(fragRasterPos, minRasterPos, maxRasterPos); uvec4 color_roughness = sample_color_from_scene_info(fragVolumeStart, clamped_raster_pos, facing); vec3 orig_color_sample = vec3(float(color_roughness.x) / 255.0, float(color_roughness.y) / 255.0, float(color_roughness.z) / 255.0); vec3 color_sum; uint orig_neighbor = sample_neighbor_from_scene_info(fragVolumeStart, clamped_raster_pos, facing); if (orig_neighbor != 0) { vec3 color_direct = diffuse_tracing(fragVolumeStart, clamped_raster_pos, clamped_pos, facing); Tracing t = trace_ray(fragVolumeStart, ubo.camera_pos, clamped_pos - ubo.camera_pos, pos_infinity, false); float opacity = float(color_roughness.w) / 255.0; vec3 color_seen_through; if (t.has_hit) { color_seen_through = diffuse_tracing(t.end_volume, t.end_raster, t.end_pos, t.end_facing) * orig_color_sample * t.color_mul; color_seen_through = add_reflection(t.end_direction, t.end_facing, t.end_volume, t.end_pos, t.end_color, color_seen_through); } else { // Todo: hit sky box color_seen_through = vec3(0.0, 0.0, 0.0); } color_direct = add_reflection(normalize(clamped_pos - ubo.camera_pos), facing, fragVolumeStart, clamped_pos, color_roughness, color_direct); color_sum = opacity * color_direct + (1.0 - opacity) * color_seen_through; } else { color_sum = diffuse_tracing(fragVolumeStart, clamped_raster_pos, clamped_pos, facing); color_sum = add_reflection(normalize(clamped_pos - ubo.camera_pos), facing, fragVolumeStart, clamped_pos, color_roughness, color_sum); } outColor = vec4(color_sum, 1.0); }