#version 450 layout(location = 0) in vec2 fragRasterPos; layout(location = 1) flat in uint fragVolumeStart; layout(location = 2) in vec3 origPosition; layout(location = 3) flat in uint facing; layout(location = 4) flat in uvec2 minRasterPos; layout(location = 5) flat in uvec2 maxRasterPos; layout(location = 0) out vec4 outColor; layout(binding = 0) uniform UniformBufferObject { mat4 model; mat4 geom_rot; mat4 view; mat4 proj; vec3 camera_pos; bool[16] use_geom_shader; } ubo; // 0 - location for the maximum number of lights referenced per chunk (also will be the invalid memory allocation for pointing to a nonexistant neighbor) // 1 - location for the max iterations per light // 2 - diffuse raster samples (2*n + 1) * (2*n + 1) so as to always have at least the central fragment covered // 3 - diffuse raster size (float, needs to be decoded) // 4 - max recursive rays // 5 - diffuse rays per hit // 6 - maximum number of compounds per light layout(binding = 2) readonly buffer SceneInfoBuffer{ uint infos[]; } scene_info; layout(binding = 3) readonly buffer CompoundBuffer { uint compounds[]; }; layout(binding = 10) readonly buffer OctTreeMemory { uint oct_tree_mem[]; }; uint max_num_lights = scene_info.infos[0]; uint max_iterations_per_light = scene_info.infos[1]; // diffuse raytracing using a quadratic raster of rays int half_diffuse_raster_steps = int(scene_info.infos[2]); float raster_distance = uintBitsToFloat(scene_info.infos[3]); int raster_points = (2 * half_diffuse_raster_steps + 1) * (2 * half_diffuse_raster_steps + 1); float pos_infinity = uintBitsToFloat(0x7F800000); // set limit for maximal iterations uint max_iterations = max_num_lights * max_iterations_per_light * raster_points; uint iteration_num = 0; const uint absolute_max_compounds = 10; uint max_num_compounds = min(scene_info.infos[6], absolute_max_compounds); uvec4 unpack_color(uint val) { // left most 8 bits first uint val1 = (val >> 24); uint val2 = (val << 8) >> 24; uint val3 = (val << 16) >> 24; uint val4 = (val << 24) >> 24; return uvec4(val4, val3, val2, val1); } uint array_descr_offset = 6 + max_num_lights + max_num_compounds; uint color_array_offset = 24 + 1; uint sample_neighbor_from_scene_info(uint volume_start, uvec2 raster_pos, uint f) { uint array_descr_start = volume_start + array_descr_offset; uint color_array_start = array_descr_start + color_array_offset; uint top_color_size_u = scene_info.infos[array_descr_start]; uint top_color_size_v = scene_info.infos[array_descr_start + 1]; uint bottom_color_size_u = scene_info.infos[array_descr_start + 2]; uint bottom_color_size_v = scene_info.infos[array_descr_start + 3]; uint left_color_size_u = scene_info.infos[array_descr_start + 4]; uint left_color_size_v = scene_info.infos[array_descr_start + 5]; uint right_color_size_u = scene_info.infos[array_descr_start + 6]; uint right_color_size_v = scene_info.infos[array_descr_start + 7]; uint front_color_size_u = scene_info.infos[array_descr_start + 8]; uint front_color_size_v = scene_info.infos[array_descr_start + 9]; uint back_color_size_u = scene_info.infos[array_descr_start + 10]; uint back_color_size_v = scene_info.infos[array_descr_start + 11]; uint top_neighbor_size_u = scene_info.infos[array_descr_start + 12]; uint top_neighbor_size_v = scene_info.infos[array_descr_start + 13]; uint bottom_neighbor_size_u = scene_info.infos[array_descr_start + 14]; uint bottom_neighbor_size_v = scene_info.infos[array_descr_start + 15]; uint left_neighbor_size_u = scene_info.infos[array_descr_start + 16]; uint left_neighbor_size_v = scene_info.infos[array_descr_start + 17]; uint right_neighbor_size_u = scene_info.infos[array_descr_start + 18]; uint right_neighbor_size_v = scene_info.infos[array_descr_start + 19]; uint front_neighbor_size_u = scene_info.infos[array_descr_start + 20]; uint front_neighbor_size_v = scene_info.infos[array_descr_start + 21]; uint back_neighbor_size_u = scene_info.infos[array_descr_start + 22]; uint back_neighbor_size_v = scene_info.infos[array_descr_start + 23]; uint top_color_size = top_color_size_u * top_color_size_v; uint bottom_color_size = bottom_color_size_u * bottom_color_size_v; uint left_color_size = left_color_size_u * left_color_size_v; uint right_color_size = right_color_size_u * right_color_size_v; uint front_color_size = front_color_size_u * front_color_size_v; uint back_color_size = back_color_size_u * back_color_size_v; uint color_array_end = color_array_start + top_color_size + bottom_color_size + left_color_size + right_color_size + front_color_size + back_color_size; uint top_neighbor_size = top_neighbor_size_u * top_neighbor_size_v; uint bottom_neighbor_size = bottom_neighbor_size_u * bottom_neighbor_size_v; uint left_neighbor_size = left_neighbor_size_u * left_neighbor_size_v; uint right_neighbor_size = right_neighbor_size_u * right_neighbor_size_v; uint front_neighbor_size = front_neighbor_size_u * front_neighbor_size_v; uint back_neighbor_size = back_neighbor_size_u * back_neighbor_size_v; // maybe do an array solution for this as well uint array_start = color_array_end + uint(f > 0) * top_neighbor_size + uint(f > 1) * bottom_neighbor_size + uint(f > 2) * left_neighbor_size + uint(f > 3) * right_neighbor_size + uint(f > 4) * front_neighbor_size; uint us[6] = {top_neighbor_size_u, bottom_neighbor_size_u, left_neighbor_size_u, right_neighbor_size_u, front_neighbor_size_u, back_neighbor_size_u}; uint vs[6] = {top_neighbor_size_v, bottom_neighbor_size_v, left_neighbor_size_v, right_neighbor_size_v, front_neighbor_size_v, back_neighbor_size_v}; uint u_size = us[f]; uint v_size = vs[f]; uint value = scene_info.infos[array_start + raster_pos.x * v_size * uint(u_size > 1) + raster_pos.y * uint(v_size > 1)]; return value; } uint sample_neighbor_from_scene_info(uint volume_start, vec2 raster_pos, uint f) { return sample_neighbor_from_scene_info(volume_start, uvec2(uint(floor(raster_pos.x)), uint(floor(raster_pos.y))), f); } uvec4 sample_color_from_scene_info(uint volume_start, uvec2 raster_pos, uint f) { uint array_descr_start = volume_start + array_descr_offset; uint color_array_start = array_descr_start + color_array_offset; uint top_color_size_u = scene_info.infos[array_descr_start]; uint top_color_size_v = scene_info.infos[array_descr_start + 1]; uint bottom_color_size_u = scene_info.infos[array_descr_start + 2]; uint bottom_color_size_v = scene_info.infos[array_descr_start + 3]; uint left_color_size_u = scene_info.infos[array_descr_start + 4]; uint left_color_size_v = scene_info.infos[array_descr_start + 5]; uint right_color_size_u = scene_info.infos[array_descr_start + 6]; uint right_color_size_v = scene_info.infos[array_descr_start + 7]; uint front_color_size_u = scene_info.infos[array_descr_start + 8]; uint front_color_size_v = scene_info.infos[array_descr_start + 9]; uint back_color_size_u = scene_info.infos[array_descr_start + 10]; uint back_color_size_v = scene_info.infos[array_descr_start + 11]; uint top_size = top_color_size_u * top_color_size_v; uint bottom_size = bottom_color_size_u * bottom_color_size_v; uint left_size = left_color_size_u * left_color_size_v; uint right_size = right_color_size_u * right_color_size_v; uint front_size = front_color_size_u * front_color_size_v; uint back_size = back_color_size_u * back_color_size_v; // maybe do an array solution for this as well uint array_start = color_array_start + uint(f > 0) * top_size + uint(f > 1) * bottom_size + uint(f > 2) * left_size + uint(f > 3) * right_size + uint(f > 4) * front_size; uint us[6] = {top_color_size_u, bottom_color_size_u, left_color_size_u, right_color_size_u, front_color_size_u, back_color_size_u}; uint vs[6] = {top_color_size_v, bottom_color_size_v, left_color_size_v, right_color_size_v, front_color_size_v, back_color_size_v}; uint u_size = us[f]; uint v_size = vs[f]; uint value = scene_info.infos[array_start + clamp(raster_pos.x, 0, u_size) * v_size * uint(u_size > 1) + clamp(raster_pos.y, 0, v_size) * uint(v_size > 1)]; return unpack_color(value); } uvec4 sample_color_from_scene_info(uint volume_start, vec2 raster_pos, uint f) { return sample_color_from_scene_info(volume_start, uvec2(uint(floor(raster_pos.x)), uint(floor(raster_pos.y))), f); } vec3 get_light_position(uint light_index) { return vec3(uintBitsToFloat(scene_info.infos[light_index + 1]), uintBitsToFloat(scene_info.infos[light_index + 2]), uintBitsToFloat(scene_info.infos[light_index + 3])); } vec3 get_light_color(uint light_index) { return vec3(float(scene_info.infos[light_index + 4]) / 255.0, float(scene_info.infos[light_index + 5]) / 255.0, float(scene_info.infos[light_index + 6]) / 255.0); } vec3 normal_for_facing(uint facing) { if (facing == 0) { return vec3(0.0, 0.0, -1.0); } if (facing == 1) { return vec3(0.0, 0.0, 1.0); } if (facing == 2) { return vec3(1.0, 0.0, 0.0); } if (facing == 3) { return vec3(-1.0, 0.0, 0.0); } if (facing == 4) { return vec3(0.0, 1.0, 0.0); } if (facing == 5) { return vec3(0.0, -1.0, 0.0); } return vec3(0.0, 0.0, 0.0); } vec3 reflect_vector(vec3 direction, uint facing) { vec3 normal = normal_for_facing(facing); return direction - 2.0 * dot(direction, normal) * normal; } uvec3 parent_child_vec(uint child_size, uint child_index) { if (child_index == 1) { return uvec3(0, 0, 0); } if (child_index == 2) { return uvec3(child_size, 0, 0); } if (child_index == 3) { return uvec3(0, child_size, 0); } if (child_index == 4) { return uvec3(child_size, child_size, 0); } if (child_index == 5) { return uvec3(0, 0, child_size); } if (child_index == 6) { return uvec3(child_size, 0, child_size); } if (child_index == 7) { return uvec3(0, child_size, child_size); } if (child_index == 8) { return uvec3(child_size, child_size, child_size); } return uvec3(0, 0, 0); } uint next_oct_tree_child(vec3 mid_point, vec3 check_pos, bool child_open[8]) { if (check_pos.x <= mid_point.x && check_pos.y <= mid_point.y && check_pos.z <= mid_point.z && child_open[0]) { return 1; } if (check_pos.x >= mid_point.x && check_pos.y <= mid_point.y && check_pos.z <= mid_point.z && child_open[1]) { return 2; } if (check_pos.x <= mid_point.x && check_pos.y >= mid_point.y && check_pos.z <= mid_point.z && child_open[2]) { return 3; } if (check_pos.x >= mid_point.x && check_pos.y >= mid_point.y && check_pos.z <= mid_point.z && child_open[3]) { return 4; } if (check_pos.x <= mid_point.x && check_pos.y <= mid_point.y && check_pos.z >= mid_point.z && child_open[4]) { return 5; } if (check_pos.x >= mid_point.x && check_pos.y <= mid_point.y && check_pos.z >= mid_point.z && child_open[5]) { return 6; } if (check_pos.x <= mid_point.x && check_pos.y >= mid_point.y && check_pos.z >= mid_point.z && child_open[6]) { return 7; } if (check_pos.x >= mid_point.x && check_pos.y >= mid_point.y && check_pos.z >= mid_point.z && child_open[7]) { return 8; } return 0; // return to parent } struct Tracing { vec3 end_pos; uvec4 end_color; uint end_volume; uint end_facing; float end_factor; uint end_cycle; bool has_hit; vec3 color_mul; uvec2 end_raster; vec3 end_direction; bool has_transparent_hit; }; Tracing trace_ray(uint volume_start, vec3 starting_pos, vec3 start_direction, float start_max_factor, bool allow_reflect) { vec3 direction = start_direction; float max_factor = start_max_factor; vec3 pos = starting_pos; // setup volume info uint volume_index = volume_start; float volume_scale = uintBitsToFloat(scene_info.infos[volume_index + array_descr_offset + color_array_offset - 1]); float volume_pos_x = uintBitsToFloat(scene_info.infos[volume_index + 0]); float volume_pos_y = uintBitsToFloat(scene_info.infos[volume_index + 1]); float volume_pos_z = uintBitsToFloat(scene_info.infos[volume_index + 2]); bool x_pos = direction.x > 0.0; bool x_null = (direction.x == 0.0); bool y_pos = direction.y > 0.0; bool y_null = (direction.y == 0.0); bool z_pos = direction.z > 0.0; bool z_null = (direction.z == 0.0); // default is max factor, that way we avoid collision when going parallel to an axis. The other directions will score a hit float x_factor = max_factor; float y_factor = max_factor; float z_factor = max_factor; Tracing result; result.has_hit = false; result.has_transparent_hit = false; result.color_mul = vec3(1.0, 1.0, 1.0); // intermediate storage for transparent hit values vec3 end_pos_transparent; uvec4 end_color_transparent; uint end_volume_transparent; uint end_facing_transparent; uvec2 end_raster_transparent; vec3 color_mul_transparent; uint next_volumetric_index = 0; uint[absolute_max_compounds] done_volumetrics; for (int i=0; i < max_num_compounds; i++) { done_volumetrics[i] = 0; } uint[absolute_max_compounds] compound_starts; float[absolute_max_compounds] hit_factors; bool[absolute_max_compounds] is_x_hits; bool[absolute_max_compounds] is_y_hits; bool[absolute_max_compounds] is_z_hits; bool[absolute_max_compounds] hits_inside; while (iteration_num < max_iterations) { iteration_num ++; for (int i=0; i < max_num_compounds; i++) { compound_starts[i] = 0; hit_factors[i] = 0.0; is_x_hits[i] = false; is_y_hits[i] = false; is_z_hits[i] = false; hits_inside[i] = false; } uint compound_num = 0; // go over the borders by this amount float overstep = 0.00001 / length(direction); uint hits = 0; while (scene_info.infos[volume_index + 6 + max_num_lights + compound_num] != 0 && compound_num < max_num_compounds && iteration_num < max_iterations && !result.has_hit) { uint compound_start = scene_info.infos[volume_index + 6 + max_num_lights + compound_num]; bool already_checked = false; for (int i=0; i < max_num_compounds; i++) { if (compound_start == done_volumetrics[i]) { already_checked = true; break; } } if (already_checked) { compound_num += 1; continue; } //iteration_num ++; uint oct_tree_index = compounds[compound_start + 8]; uint compound_grid_size = compounds[compound_start]; float compound_scale = uintBitsToFloat(compounds[compound_start + 1]); vec3 compound_pos = vec3(uintBitsToFloat(compounds[compound_start + 5]), uintBitsToFloat(compounds[compound_start + 6]), uintBitsToFloat(compounds[compound_start + 7])); // check if we hit the volume float x_border = compound_pos.x + float((compound_grid_size) * uint(!x_pos)) * compound_scale; float y_border = compound_pos.y + float((compound_grid_size) * uint(!y_pos)) * compound_scale; float z_border = compound_pos.z + float((compound_grid_size) * uint(!z_pos)) * compound_scale; if (!x_null) { x_factor = (x_border - pos.x) / direction.x; } else { x_factor = max_factor; } if (!y_null) { y_factor = (y_border - pos.y) / direction.y; } else { y_factor = max_factor; } if (!z_null) { z_factor = (z_border - pos.z) / direction.z; } else { z_factor = max_factor; } x_factor += overstep; y_factor += overstep; z_factor += overstep; vec3 intersection_pos = pos + 10.0 * overstep * direction; bool is_x_hit = false; bool is_y_hit = false; bool is_z_hit = false; bool hit_inside = false; float hit_factor; // check that either the hit is in range or we are inside of the compound from the start if ((compound_pos.x <= intersection_pos.x && intersection_pos.x <= compound_pos.x + float(compound_grid_size) * compound_scale) && (compound_pos.y <= intersection_pos.y && intersection_pos.y <= compound_pos.y + float(compound_grid_size) * compound_scale) && (compound_pos.z <= intersection_pos.z && intersection_pos.z <= compound_pos.z + float(compound_grid_size) * compound_scale)){ hit_inside = true; hit_factor = 10.0 * overstep; } else { vec3 intersection_pos_x = pos + x_factor * direction; vec3 intersection_pos_y = pos + y_factor * direction; vec3 intersection_pos_z = pos + z_factor * direction; if ((compound_pos.x <= intersection_pos_x.x && intersection_pos_x.x <= compound_pos.x + float(compound_grid_size) * compound_scale) && (compound_pos.y <= intersection_pos_x.y && intersection_pos_x.y <= compound_pos.y + float(compound_grid_size) * compound_scale) && (compound_pos.z <= intersection_pos_x.z && intersection_pos_x.z <= compound_pos.z + float(compound_grid_size) * compound_scale) && x_factor > 0.0 && x_factor <= max_factor) { hit_inside = true; is_x_hit = true; intersection_pos = intersection_pos_x; hit_factor = x_factor; } if ((compound_pos.x <= intersection_pos_y.x && intersection_pos_y.x <= compound_pos.x + float(compound_grid_size) * compound_scale) && (compound_pos.y <= intersection_pos_y.y && intersection_pos_y.y <= compound_pos.y + float(compound_grid_size) * compound_scale) && (compound_pos.z <= intersection_pos_y.z && intersection_pos_y.z <= compound_pos.z + float(compound_grid_size) * compound_scale) && y_factor > 0.0 && y_factor <= max_factor && (y_factor < x_factor || !is_x_hit)) { hit_inside = true; is_y_hit = true; intersection_pos = intersection_pos_y; hit_factor = y_factor; } if ((compound_pos.x <= intersection_pos_z.x && intersection_pos_z.x <= compound_pos.x + float(compound_grid_size) * compound_scale) && (compound_pos.y <= intersection_pos_z.y && intersection_pos_z.y <= compound_pos.y + float(compound_grid_size) * compound_scale) && (compound_pos.z <= intersection_pos_z.z && intersection_pos_z.z <= compound_pos.z + float(compound_grid_size) * compound_scale) && z_factor > 0.0 && z_factor <= max_factor && (z_factor < x_factor || !is_x_hit) && (z_factor < y_factor || !is_y_hit)) { hit_inside = true; is_z_hit = true; intersection_pos = intersection_pos_z; hit_factor = z_factor; } } compound_starts[hits] = compound_start; hit_factors[hits] = hit_factor; is_x_hits[hits] = is_x_hit; is_y_hits[hits] = is_y_hit; is_z_hits[hits] = is_z_hit; hits_inside[hits] = hit_inside; hits += 1 * uint(hit_inside); done_volumetrics[next_volumetric_index] = compound_start; next_volumetric_index = (next_volumetric_index + 1) % max_num_compounds; compound_num += 1; } for (int i=0; i < hits; i++) { if (result.has_hit) { break; } // find encounters in order float min_factor = max_factor; uint min_index = 0; for (int j = 0; j < hits; j++) { if (hit_factors[j] < min_factor) { min_factor = hit_factors[j]; min_index = j; } } // set up the compound uint compound_start = compound_starts[min_index]; bool is_x_hit = is_x_hits[min_index]; bool is_y_hit = is_y_hits[min_index]; bool is_z_hit = is_z_hits[min_index]; uint oct_tree_index = compounds[compound_start + 8]; uint compound_grid_size = compounds[compound_start]; float compound_scale = uintBitsToFloat(compounds[compound_start + 1]); vec3 compound_pos = vec3(uintBitsToFloat(compounds[compound_start + 5]), uintBitsToFloat(compounds[compound_start + 6]), uintBitsToFloat(compounds[compound_start + 7])); vec3 intersection_pos = pos + hit_factors[min_index] * direction; // invalidate the min found hit_factors[min_index] = max_factor; vec3 oct_tree_pos = vec3(compound_pos); uint current_size = compound_grid_size; vec3 mid_point = oct_tree_pos + float(current_size / 2) * vec3(compound_scale, compound_scale, compound_scale); bool children_open[8] = {true, true, true, true, true, true, true, true}; uint oct_tree_address = oct_tree_index; // iterate through the oct_tree uint check_it = 0; uint max_check_it = 70; uint prev_child = 0; uint prev_prev_child = 0; uvec3 grid_pos = uvec3(0, 0, 0); uvec3 parent_pos = uvec3(0, 0, 0); bool has_moved = false; while (!result.has_hit && check_it < max_check_it) { // failsafe to get out in case has_moved runs into an accuracy issue check_it ++; oct_tree_pos = vec3(grid_pos) * compound_scale + compound_pos; mid_point = oct_tree_pos + (float(current_size / 2) * vec3(compound_scale, compound_scale, compound_scale)); uint child_index = next_oct_tree_child(mid_point, intersection_pos, children_open); if (child_index == 0) { // go up to parent // if parent is 0 abort, as we have reached the root node again and try to exit it if (oct_tree_mem[oct_tree_address] == 0) { break; } for (int i=0; i < 8; i++) { children_open[i] = true; } uint parent_index = oct_tree_mem[oct_tree_address]; // check which child we came from child_index = 1 * uint(oct_tree_address == oct_tree_mem[parent_index + 1]) + 2 * uint(oct_tree_address == oct_tree_mem[parent_index + 2]) + 3 * uint(oct_tree_address == oct_tree_mem[parent_index + 3]) + 4 * uint(oct_tree_address == oct_tree_mem[parent_index + 4]) + 5 * uint(oct_tree_address == oct_tree_mem[parent_index + 5]) + 6 * uint(oct_tree_address == oct_tree_mem[parent_index + 6]) + 7 * uint(oct_tree_address == oct_tree_mem[parent_index + 7]) + 8 * uint(oct_tree_address == oct_tree_mem[parent_index + 8]); // mark as done to avoid reinvestigating, since intersection_pos is on its edge children_open[child_index - 1] = false; prev_prev_child = prev_child; prev_child = oct_tree_address; uvec3 back_vec = parent_child_vec(current_size, child_index); grid_pos -= parent_child_vec(current_size, child_index); current_size *= 2; oct_tree_address = parent_index; } else { // go down into child if (current_size == 2) { // check block if hit break if (oct_tree_mem[oct_tree_address + child_index] != 0) { result.has_hit = true; result.end_color = unpack_color(oct_tree_mem[oct_tree_address + child_index]); break; } } else { // check if the child has content, else skip to next child of current parent uint x = oct_tree_mem[oct_tree_address + child_index]; if (oct_tree_mem[x] != 0) { // change base address and position to child current_size /= 2; oct_tree_address = x; grid_pos += parent_child_vec(current_size, child_index); for (int i=0; i < 8; i++) { children_open[i] = true; } continue; } } children_open[child_index - 1] = false; // we did not go deeper or had a hit, so intersection pos needs to be updated // new intersection pos calc vec3 offset = vec3(parent_child_vec(current_size / 2, child_index)) * compound_scale; vec3 low = oct_tree_pos + offset; float x_border = low.x + float((compound_scale * current_size / 2) * uint(x_pos)); float y_border = low.y + float((compound_scale * current_size / 2) * uint(y_pos)); float z_border = low.z + float((compound_scale * current_size / 2) * uint(z_pos)); if (!x_null) { x_factor = (x_border - pos.x) / direction.x; if (x_factor <= 0.0) { x_factor = max_factor; } } else { x_factor = max_factor; } if (!y_null) { y_factor = (y_border - pos.y) / direction.y; if (y_factor <= 0.0) { y_factor = max_factor; } } else { y_factor = max_factor; } if (!z_null) { z_factor = (z_border - pos.z) / direction.z; if (z_factor <= 0.0) { z_factor = max_factor; } } else { z_factor = max_factor; } float smallest_factor = min(min(x_factor, y_factor), z_factor); if (x_factor == smallest_factor) { is_x_hit = true; is_y_hit = false; is_z_hit = false; } if (y_factor == smallest_factor) { is_x_hit = false; is_y_hit = true; is_z_hit = false; } if (z_factor == smallest_factor) { is_x_hit = false; is_y_hit = false; is_z_hit = true; } // move a bit further to fully enter the next quadrant smallest_factor += overstep; //has_moved = length(intersection_pos - (pos + smallest_factor * direction)) >= 0.00001; has_moved = intersection_pos != (pos + smallest_factor * direction); intersection_pos = pos + smallest_factor * direction; } } uint hit_facing = uint(is_x_hit) * (2 + uint(x_pos)) + uint(is_y_hit) * (4 + uint(y_pos)) + uint(is_z_hit && !z_pos); //result.has_hit = true; result.end_pos = intersection_pos; result.end_facing = hit_facing; result.end_volume = volume_index; result.end_direction = direction; } if (result.has_hit) { break; } float x_border = volume_pos_x + float((scene_info.infos[volume_index + 3]) * uint(x_pos)) * volume_scale - 0.5 * volume_scale; float y_border = volume_pos_y + float((scene_info.infos[volume_index + 4]) * uint(y_pos)) * volume_scale - 0.5 * volume_scale; float z_border = volume_pos_z + float((scene_info.infos[volume_index + 5]) * uint(z_pos)) * volume_scale - 0.5 * volume_scale; bool needs_next_light = false; if (!x_null) { x_factor = (x_border - pos.x) / direction.x; } else { x_factor = max_factor; } if (!y_null) { y_factor = (y_border - pos.y) / direction.y; } else { y_factor = max_factor; } if (!z_null) { z_factor = (z_border - pos.z) / direction.z; } else { z_factor = max_factor; } if ((x_factor >= max_factor) && (y_factor >= max_factor) && (z_factor >= max_factor)) { // no hit, finish tracking break; } else { // if there is a border hit before reaching the end // change to the relevant next volume // Todo: look into removing ifs from this uint hit_facing = 0; uint u = 0; uint v = 0; bool is_x_smallest = x_factor < y_factor && x_factor < z_factor; bool is_y_smallest = y_factor < x_factor && y_factor < z_factor; bool is_z_smallest = z_factor <= x_factor && z_factor <= y_factor; hit_facing = uint(is_x_smallest) * (2 + uint(x_pos)) + uint(is_y_smallest) * (4 + uint(y_pos)) + uint(is_z_smallest && !z_pos); float smallest_factor = min(min(x_factor, y_factor), z_factor); // maybe use multiplication instead? vec3 intersection_pos = pos + smallest_factor * direction; u = uint(is_x_smallest) * (uint(round((intersection_pos.y - volume_pos_y) / volume_scale))) + uint(is_y_smallest || is_z_smallest) * (uint(round((intersection_pos.x - volume_pos_x) / volume_scale))); v = uint(is_x_smallest || is_y_smallest) * (uint(round((intersection_pos.z - volume_pos_z) / volume_scale))) + uint(is_z_smallest) * (uint(round((intersection_pos.y - volume_pos_y) / volume_scale))); uint next_neighbor = sample_neighbor_from_scene_info(volume_index, uvec2(u, v), hit_facing); uvec4 color_sample = sample_color_from_scene_info(volume_index, uvec2(u, v), hit_facing); if (color_sample.xyz == uvec3(0, 0, 0)) { // not a color hit, so check neighbor if (next_neighbor != 0) { volume_index = next_neighbor; volume_scale = uintBitsToFloat(scene_info.infos[volume_index + array_descr_offset + color_array_offset - 1]); volume_pos_x = uintBitsToFloat(scene_info.infos[volume_index + 0]); volume_pos_y = uintBitsToFloat(scene_info.infos[volume_index + 1]); volume_pos_z = uintBitsToFloat(scene_info.infos[volume_index + 2]); } else { // neighbor miss end_color_transparent = uvec4(255, 0, 0, 255); result.end_color = uvec4(255, 0, 0, 255); break; } } else { if (next_neighbor != 0) { // transparent hit, move on but change the color end_volume_transparent = volume_index; color_mul_transparent = result.color_mul; volume_index = next_neighbor; volume_scale = uintBitsToFloat(scene_info.infos[volume_index + array_descr_offset + color_array_offset - 1]); volume_pos_x = uintBitsToFloat(scene_info.infos[volume_index + 0]); volume_pos_y = uintBitsToFloat(scene_info.infos[volume_index + 1]); volume_pos_z = uintBitsToFloat(scene_info.infos[volume_index + 2]); result.color_mul = result.color_mul * vec3(float(color_sample.x) / 255.0, float(color_sample.y) / 255.0, float(color_sample.z) / 255.0); result.has_transparent_hit = true; result.end_volume = volume_index; result.end_direction = direction; end_color_transparent = color_sample; end_raster_transparent = uvec2(u, v); end_pos_transparent = intersection_pos; end_facing_transparent = hit_facing; // stop iterating if there is barely anything left to see if (max(result.color_mul.x, max(result.color_mul.y, result.color_mul.z)) < 0.1) { break; } } else { // color hit, either reflect or move on result.end_pos = intersection_pos; result.end_facing = hit_facing; result.end_color = color_sample; result.end_raster = uvec2(u, v); result.has_hit = true; result.end_volume = volume_index; result.end_direction = direction; float reflectivity = 1.0 - float(color_sample.w) / 255.0; vec3 refltective_color_mul = result.color_mul * vec3(float(color_sample.x) / 255.0, float(color_sample.y) / 255.0, float(color_sample.z) / 255.0); vec3 visibility_after_reflection = refltective_color_mul * reflectivity; //break; //max(visibility_after_reflection.x, max(visibility_after_reflection.y, visibility_after_reflection.z)) >= 0.1 && if (max(visibility_after_reflection.x, max(visibility_after_reflection.y, visibility_after_reflection.z)) >= 0.1 && allow_reflect) { // do reflect direction = reflect_vector(direction, hit_facing); pos = intersection_pos; //max_factor -= smallest_factor; x_pos = direction.x > 0.0; x_null = (direction.x == 0.0); y_pos = direction.y > 0.0; y_null = (direction.y == 0.0); z_pos = direction.z > 0.0; z_null = (direction.z == 0.0); // clear volumetrics for reevaluation for (int i=0; i < max_num_compounds; i++) { done_volumetrics[i] = 0; } } else { break; } } } } } result.end_factor = min(min(x_factor, y_factor), z_factor); result.end_cycle = iteration_num; // in case we have a transparent hit but no hit afterwards if (!result.has_hit && result.has_transparent_hit) { // did we stop because nothing could be seen through the object? if (max(result.color_mul.x, max(result.color_mul.y, result.color_mul.z)) < 0.1) { // if so count it as a hit and recover the pre transparent color multiplier result.has_hit = true; result.color_mul = color_mul_transparent; } result.end_pos = end_pos_transparent; result.end_color = end_color_transparent; result.end_volume = end_volume_transparent; result.end_facing = end_facing_transparent; result.end_raster = end_raster_transparent; } return result; } vec3 get_lighting_color(uint volume_start, vec3 starting_pos, vec4 orig_color_sample, vec3 normal) { uint light_num = 0; // initialize color vec3 color_sum = vec3(0.0, 0.0, 0.0);// + (orig_color_sample.xyz * 0.005); while (iteration_num < max_iterations) { // setup light info uint light_index = scene_info.infos[volume_start + 6 + light_num]; if (light_index == 0) { // abort if there is no new light break; } vec3 light_direction; float max_factor; if (scene_info.infos[light_index] == 0) { //point light light_direction = get_light_position(light_index) - starting_pos; max_factor = 1.0; } else if (scene_info.infos[light_index] == 1) { // directional light light_direction = -normalize(get_light_position(light_index)); max_factor = pos_infinity; } vec3 light_color = get_light_color(light_index); float normal_factor = max(dot(normal, normalize(light_direction)), 0.0); if (normal_factor > 0.0) { Tracing result = trace_ray(volume_start, starting_pos, light_direction, max_factor, false); // add result, if there is a hit the null vector will be added color_sum += float(!result.has_hit) * result.color_mul * normal_factor * (orig_color_sample.xyz * light_color) / (length(light_direction) * length(light_direction)); } light_num += 1; if (light_num >= max_num_lights) { break; } } return color_sum; } vec3 diffuse_tracing(uint volume_start, uvec4 color_roughness, vec3 pos, uint f) { vec4 orig_color_sample = vec4(float(color_roughness.x) / 255.0, float(color_roughness.y) / 255.0, float(color_roughness.z) / 255.0, 1); vec3 normal = normal_for_facing(f); vec3 color_sum = vec3(0.0, 0.0, 0.0); for (int u_offset = -half_diffuse_raster_steps; u_offset <= half_diffuse_raster_steps; u_offset++) { for (int v_offset = -half_diffuse_raster_steps; v_offset <= half_diffuse_raster_steps; v_offset++) { float x_offset = raster_distance * float(u_offset) * float(f == 0 || f == 1 || f == 4 || f == 5); float y_offset = raster_distance * float(u_offset) * float(f == 2 || f == 3); y_offset += raster_distance * float(v_offset) * float(f == 0 || f == 1); float z_offset = raster_distance * float(v_offset) * float(f == 4 || f == 5 || f == 2 || f == 3); vec3 offset = vec3(x_offset, y_offset, z_offset); color_sum += get_lighting_color(volume_start, pos + offset, orig_color_sample, normal) / float(raster_points); } } return color_sum; } vec3 clamp_to_volume(uint volume_start, vec3 position) { float volume_pos_x = uintBitsToFloat(scene_info.infos[volume_start + 0]); float volume_pos_y = uintBitsToFloat(scene_info.infos[volume_start + 1]); float volume_pos_z = uintBitsToFloat(scene_info.infos[volume_start + 2]); float volume_scale = uintBitsToFloat(scene_info.infos[volume_start + array_descr_offset + color_array_offset - 1]); float high_x_border = volume_pos_x + float(scene_info.infos[volume_start + 3]) * volume_scale - 0.501 * volume_scale; float high_y_border = volume_pos_y + float(scene_info.infos[volume_start + 4]) * volume_scale - 0.501 * volume_scale; float high_z_border = volume_pos_z + float(scene_info.infos[volume_start + 5]) * volume_scale - 0.501 * volume_scale; float low_x_border = float(volume_pos_x) - 0.501 * volume_scale; float low_y_border = float(volume_pos_y) - 0.501 * volume_scale; float low_z_border = float(volume_pos_z) - 0.501 * volume_scale; return vec3(min(max(position.x, low_x_border), high_x_border), min(max(position.y, low_y_border), high_y_border), min(max(position.z, low_z_border), high_z_border)); } vec2 clamp_to_quad(vec2 raster_pos, uvec2 min_raster_pos, uvec2 max_raster_pos) { return vec2(max(min_raster_pos.x, min(max_raster_pos.x - 1, raster_pos.x)), max(min_raster_pos.y, min(max_raster_pos.y - 1, raster_pos.y))); } vec3 add_reflection(vec3 view_vector, uint f, uint volume_start, vec3 pos, uvec4 color_sample, vec3 color_sum) { float reflectivity = 1.0 - float(color_sample.w) / 255.0; if (reflectivity > 0.01) { vec3 orig_color_sample = vec3(float(color_sample.x) / 255.0, float(color_sample.y) / 255.0, float(color_sample.z) / 255.0); vec3 reflection_direction = reflect_vector(view_vector, f); Tracing reflection_tracing = trace_ray(volume_start, pos, reflection_direction, pos_infinity, true); if (reflection_tracing.has_hit || reflection_tracing.has_transparent_hit) { vec3 color_from_reflection = diffuse_tracing(reflection_tracing.end_volume, reflection_tracing.end_color, reflection_tracing.end_pos, reflection_tracing.end_facing) * orig_color_sample; color_sum = color_sum * (1.0 - reflectivity) + color_from_reflection * reflectivity; } } return color_sum; } void main() { vec3 clamped_pos = clamp_to_volume(fragVolumeStart, origPosition); vec2 clamped_raster_pos = clamp_to_quad(fragRasterPos, minRasterPos, maxRasterPos); uvec4 color_roughness = sample_color_from_scene_info(fragVolumeStart, clamped_raster_pos, facing); vec3 orig_color_sample = vec3(float(color_roughness.x) / 255.0, float(color_roughness.y) / 255.0, float(color_roughness.z) / 255.0); vec3 color_sum; uint orig_neighbor = sample_neighbor_from_scene_info(fragVolumeStart, clamped_raster_pos, facing); if (orig_neighbor != 0) { vec3 color_direct = diffuse_tracing(fragVolumeStart, color_roughness, clamped_pos, facing); Tracing t = trace_ray(fragVolumeStart, ubo.camera_pos, clamped_pos - ubo.camera_pos, pos_infinity, false); float opacity = float(color_roughness.w) / 255.0; vec3 color_seen_through; if (t.has_hit) { //color_seen_through = vec3(float(t.end_color.x) / 255.0, float(t.end_color.y) / 255.0, float(t.end_color.z) / 255.0); color_seen_through = diffuse_tracing(t.end_volume, t.end_color, t.end_pos, t.end_facing) * orig_color_sample * t.color_mul; color_seen_through = add_reflection(t.end_direction, t.end_facing, t.end_volume, t.end_pos, t.end_color, color_seen_through); } else { // Todo: hit sky box color_seen_through = vec3(0.0, 0.0, 0.0); } color_direct = add_reflection(normalize(clamped_pos - ubo.camera_pos), facing, fragVolumeStart, clamped_pos, color_roughness, color_direct); color_sum = opacity * color_direct + (1.0 - opacity) * color_seen_through; //color_sum = color_seen_through; } else { color_sum = diffuse_tracing(fragVolumeStart, color_roughness, clamped_pos, facing); color_sum = add_reflection(normalize(clamped_pos - ubo.camera_pos), facing, fragVolumeStart, clamped_pos, color_roughness, color_sum); } outColor = vec4(color_sum, 1.0); }