use cgmath::{ElementWise, InnerSpace, Vector3};

use std::cell::{RefCell, Ref};
use std::rc::Rc;

use std::time::Instant;

use crate::vertex;
use crate::primitives::cube::Cube;
use crate::primitives::quad::Quad;
use crate::scene::oct_tree::OctTree;

use super::memorizable::Memorizable;
use super::light::LightSource;
use super::light::PointLight;
use super::AppData;
use super::LightsIter;
use super::Scene;

#[derive(Clone, Debug)]
pub struct EmptyVolume {
    pub memory_start: usize,

    pub size_x: usize,
    pub size_y: usize,
    pub size_z: usize,

    pub grid_position: Vector3<usize>,
    pub real_position: Vector3<f32>,
    
    pub color_left: Vec<Vector3<u8>>,
    pub color_right: Vec<Vector3<u8>>,
    pub color_top: Vec<Vector3<u8>>,
    pub color_bottom: Vec<Vector3<u8>>,
    pub color_back: Vec<Vector3<u8>>,
    pub color_front: Vec<Vector3<u8>>,

    pub roughness_left: Vec<u8>,
    pub roughness_right: Vec<u8>,
    pub roughness_top: Vec<u8>,
    pub roughness_bottom: Vec<u8>,
    pub roughness_back: Vec<u8>,
    pub roughness_front: Vec<u8>,

    pub neighbor_left: Vec<Option<Rc<RefCell<Self>>>>,
    pub neighbor_right: Vec<Option<Rc<RefCell<Self>>>>,
    pub neighbor_top: Vec<Option<Rc<RefCell<Self>>>>,
    pub neighbor_bottom: Vec<Option<Rc<RefCell<Self>>>>,
    pub neighbor_back: Vec<Option<Rc<RefCell<Self>>>>,
    pub neighbor_front: Vec<Option<Rc<RefCell<Self>>>>,

    pub scale: f32,

    old_memory_size: u32,
    dirty: bool,
}

impl EmptyVolume {
    pub fn contains_grid_pos(&self, pos: &Vector3<usize>) -> bool {
        self.grid_position[0] + self.size_x > pos[0] && pos[0] >= self.grid_position[0] && 
        self.grid_position[1] + self.size_y > pos[1] && pos[1] >= self.grid_position[1] &&
        self.grid_position[2] + self.size_z > pos[2] && pos[2] >= self.grid_position[2]
    }

    pub fn contains_real_pos(&self, pos: &Vector3<f32>) -> bool {
        self.real_position[0] + self.size_x as f32 > pos[0] && pos[0] >= self.real_position[0] && 
        self.real_position[1] + self.size_y as f32 > pos[1] && pos[1] >= self.real_position[1] &&
        self.real_position[2] + self.size_z as f32 > pos[2] && pos[2] >= self.real_position[2]
    }

    fn check_transparent(cube_result: Option<Cube>, transparent_color: &Vector3<f32>, transparent_roughness: &u8) -> bool {
        if let Some(c) = cube_result {
            return c.transparent && &c.color == transparent_color && &c.roughness == transparent_roughness
        }
        false
    }

    // MARK: From Oct Tree
    pub fn from_oct_tree(tree: &Rc<RefCell<OctTree<Cube>>>, tree_pos: Vector3<f32>) -> (Vec<Rc<RefCell<EmptyVolume>>>, OctTree<Rc<RefCell<EmptyVolume>>>) {
        // todo: ppotentially use a child exist check while going through the oct tree to find some obvios starting empty volumes. Will still need to check for possible expansions though
        let mut volumes: Vec<Rc<RefCell<EmptyVolume>>> = vec![];

        let mut neighbors: OctTree<Rc<RefCell<EmptyVolume>>> = OctTree::create(tree.borrow().size, tree.borrow().scale).unwrap();
        let start_time = Instant::now();
        // iterate over all block positions in the oct tree
        let mut check_its = 0;
        let mut x_index = 0;
        while x_index < tree.borrow().size {
            let mut y_index = 0;
            while y_index < tree.borrow().size {
                let mut z_index = 0;
                while z_index < tree.borrow().size {
                    // check if there is a block at that position
                    let query_result = tree.borrow().test_element(x_index, y_index, z_index);
                    let mut transparent = false;
                    let mut transparent_color = Vector3 {x: 0.0, y: 0.0, z: 0.0};
                    let mut tranparent_roughness = 0;
                    if let Some(c) = query_result.3 {
                        transparent = c.transparent;
                        transparent_color = c.color;
                        tranparent_roughness = c.roughness;
                    }
                    if !query_result.0 || transparent {
                        
                        //if not check that it is not already inside of a volume
                        let mut contained = false;
                        for volume in &volumes {
                            if volume.borrow().contains_grid_pos(&Vector3{x: x_index, y: y_index, z: z_index}) {
                                contained = true;
                                z_index = volume.borrow().size_z + volume.borrow().grid_position.z;
                                break;
                            }
                        }
                        if contained {
                            // abort if it is already covered
                            continue;
                        }
                        println!("new starting pos: {}, {}, {}", x_index, y_index, z_index);
                        // MARK: Start new Volume
                        let mut x_size = 0;
                        let mut y_size = 0;
                        let mut z_size = 0;

                        let neighbor_result = neighbors.test_element(x_index, y_index, z_index);

                        if query_result.1 > 1 && query_result.2.0 >= neighbor_result.2.0 && query_result.2.1 >= neighbor_result.2.1 && query_result.2.2 >= neighbor_result.2.2 && query_result.1 <= neighbor_result.1 {
                            x_size = query_result.1 - 1 - (x_index - query_result.2.0);
                            y_size = query_result.1 - 1 - (y_index - query_result.2.1);
                            z_size = query_result.1 - 1 - (z_index - query_result.2.2);
                            println!("enhanced starting size: {}, {}, {}", x_size+1, y_size+1, z_size+1);
                        }
                        println!("start growing volume x");
                        let mut grow = true;
                        while grow {
                            grow &= (x_index + x_size + 1) < tree.borrow().size;
                            if grow {
                                let mut z = 0;
                                let mut y = 0;
                                while z < z_size + 1 && y < y_size + 1 {
                                    let query_result = tree.borrow().test_element(x_index + x_size + 1, y_index + y, z_index + z);
                                    let neighbor_result = neighbors.test_element(x_index + x_size + 1, y_index + y, z_index + z);
                                    check_its += 1;
                                    grow &= ((!query_result.0 && !transparent) || (transparent && EmptyVolume::check_transparent(query_result.3, &transparent_color, &tranparent_roughness))) &&
                                        !neighbor_result.0;
                                                                        
                                    if !grow {
                                        break;
                                    }

                                    if query_result.1 > 1 && query_result.2.1 >= neighbor_result.2.1 && query_result.2.2 >= neighbor_result.2.2 && query_result.1 <= neighbor_result.1 {
                                        let start_x = query_result.2.0;
                                        let start_y = query_result.2.1;
                                        let start_z = query_result.2.2;

                                        let end_x = query_result.2.0 + query_result.1;
                                        let end_y = query_result.2.1 + query_result.1;
                                        let end_z = query_result.2.2 + query_result.1;

                                        if start_z <= z_index + z && z_index + z_size <= end_z {
                                            // we can skip iterating z
                                            z = end_z - z_index;
                                            if start_y <= y_index + y && y_index + y_size <= end_y && start_z <= z_index {
                                                // we can skip iterating y
                                                y = end_y - y_index;
                                                z = 0;
                                                continue;
                                            }
                                        }
                                    }

                                    z += 1;
                                    if z >= z_size + 1 {
                                        z = 0;
                                        y += 1;
                                    }
                                }
                            }
                            if grow {
                                x_size += 1;
                            }
                        }
                        println!("start growing volume y");
                        grow = true;
                        while grow {
                            grow &= (y_index + y_size + 1) < tree.borrow().size;
                            if grow {
                                let mut z = 0;
                                let mut x = 0;
                                while z < z_size + 1 && x < x_size + 1 {
                                    let query_result = tree.borrow().test_element(x_index + x, y_index + y_size + 1, z_index + z);
                                    let neighbor_result = neighbors.test_element(x_index + x, y_index + y_size + 1, z_index + z);
                                    check_its += 1;
                                    grow &= ((!query_result.0 && !transparent) || (transparent && EmptyVolume::check_transparent(query_result.3, &transparent_color, &tranparent_roughness))) &&
                                        !neighbor_result.0;
                                    
                                    if !grow {
                                        break;
                                    }
                                    
                                    if query_result.1 > 1 && query_result.2.0 >= neighbor_result.2.0 && query_result.2.2 >= neighbor_result.2.2 && query_result.1 <= neighbor_result.1 {
                                        let start_x = query_result.2.0;
                                        let start_y = query_result.2.1;
                                        let start_z = query_result.2.2;

                                        let end_x = query_result.2.0 + query_result.1;
                                        let end_y = query_result.2.1 + query_result.1;
                                        let end_z = query_result.2.2 + query_result.1;

                                        if start_z <= z_index + z && z_index + z_size <= end_z {
                                            // we can skip iterating z
                                            z = end_z - z_index;
                                            if start_x <= x_index + x && x_index + x_size <= end_x && start_z <= z_index {
                                                // we can skip iterating x
                                                x = end_x - x_index;
                                                z = 0;
                                                continue;
                                            }
                                        }
                                    }

                                    z += 1;
                                    if z >= z_size + 1 {
                                        z = 0;
                                        x += 1;
                                    }
                                }
                            }
                            
                            if grow {
                                y_size += 1;
                            }
                        }
                        println!("start growing volume z");
                        grow = true;
                        while grow {
                            grow &= (z_index + z_size + 1) < tree.borrow().size;
                            if grow {
                                let mut y = 0;
                                let mut x = 0;
                                while y < y_size + 1 && x < x_size + 1 {
                                    let query_result = tree.borrow().test_element(x_index + x, y_index + y, z_index + z_size + 1);
                                    let neighbor_result = neighbors.test_element(x_index + x, y_index + y, z_index + z_size + 1);
                                    check_its += 1;
                                    grow &= ((!query_result.0 && !transparent) || (transparent && EmptyVolume::check_transparent(query_result.3, &transparent_color, &tranparent_roughness))) &&
                                        !neighbor_result.0;
                                                                        
                                    if !grow {
                                        break;
                                    }

                                    if query_result.1 > 1 && query_result.2.1 >= neighbor_result.2.1 && query_result.2.0 >= neighbor_result.2.0 && query_result.1 <= neighbor_result.1 {
                                        let start_x = query_result.2.0;
                                        let start_y = query_result.2.1;
                                        let start_z = query_result.2.2;

                                        let end_x = query_result.2.0 + query_result.1;
                                        let end_y = query_result.2.1 + query_result.1;
                                        let end_z = query_result.2.2 + query_result.1;

                                        if start_x <= x_index + x && x_index + x_size <= end_x {
                                            // we can skip iterating x
                                            x = end_x - x_index;
                                            if start_y <= y_index + y && y_index + y_size <= end_y && start_x <= x_index {
                                                // we can skip iterating y
                                                y = end_y - y_index;
                                                x = 0;
                                                continue;
                                            }
                                        }
                                    }

                                    x += 1;
                                    if x >= x_size + 1 {
                                        x = 0;
                                        y += 1;
                                    }
                                }
                            }
                            if grow {
                                z_size += 1;
                            }
                        }
                        println!("final size: {}, {}, {}", x_size+1, y_size+1, z_size+1);
                        // create new empty volume
                        let new_volume = EmptyVolume {
                            memory_start: 0,
                            size_x: x_size + 1,
                            size_y: y_size + 1,
                            size_z: z_size + 1,
                            grid_position: Vector3{x: x_index, y: y_index, z: z_index},
                            real_position: tree_pos + Vector3{x: x_index as f32 * tree.borrow().scale, y: y_index as f32 * tree.borrow().scale, z: z_index as f32 * tree.borrow().scale},
                            color_left: vec![],
                            color_right: vec![],
                            color_top: vec![],
                            color_bottom: vec![],
                            color_back: vec![],
                            color_front: vec![],
                            roughness_left: vec![],
                            roughness_right: vec![],
                            roughness_top: vec![],
                            roughness_bottom: vec![],
                            roughness_back: vec![],
                            roughness_front: vec![],
                            neighbor_left: vec![],
                            neighbor_right: vec![],
                            neighbor_top: vec![],
                            neighbor_bottom: vec![],
                            neighbor_back: vec![],
                            neighbor_front: vec![],
                            scale: tree.borrow().scale,
                            old_memory_size: 0,
                            dirty: true,
                        };
                        println!("adding neighbor references");
                        // MARK: fill in info in the neighbor octtree
                        let reference = Rc::new(RefCell::new(new_volume));
                        for x in 0..x_size+1 {
                            for y in 0..y_size+1 {
                                for z in 0..z_size+1 {
                                    neighbors.set_element(reference.clone(), reference.borrow().grid_position.x + x, reference.borrow().grid_position.y + y, reference.borrow().grid_position.z + z);
                                    // fill only the edges
                                    /*if x == 0 || x == x_size || y == 0 || y == y_size || z==0 || z == z_size {
                                        neighbors.set_element(reference.clone(), reference.borrow().position.x + x, reference.borrow().position.y + y, reference.borrow().position.z + z)
                                    }*/
                                }   
                            }
                        }
                        println!("add the border information for color and roughness");
                        let x_min_pos;
                        if reference.borrow().grid_position.x == 0 {
                            // will result in an empty color and roughness map.
                            x_min_pos = 0;
                        }
                        else {
                            x_min_pos = reference.borrow().grid_position.x -1;
                        }
                        let y_min_pos;
                        if reference.borrow().grid_position.y == 0 {
                            // will result in an empty color and roughness map.
                            y_min_pos = 0;
                        }
                        else {
                            y_min_pos = reference.borrow().grid_position.y -1;
                        }
                        let z_min_pos;
                        if reference.borrow().grid_position.z == 0 {
                            // will result in an empty color and roughness map.
                            z_min_pos = 0;
                        }
                        else {
                            z_min_pos = reference.borrow().grid_position.z -1;
                        }
                        let x_max_pos = reference.borrow().grid_position.x + reference.borrow().size_x;
                        let y_max_pos = reference.borrow().grid_position.y + reference.borrow().size_y;
                        let z_max_pos = reference.borrow().grid_position.z + reference.borrow().size_z;
                        // MARK: bottom face of the volume
                        let mut bottom_colors = vec![];
                        let mut bottom_roughness = vec![];
                        let mut bottom_elements_num = 0;
                        for x in 0..x_size+1 {
                            for y in 0..y_size+1 {
                                if let Some(c) = tree.borrow().get_element(reference.borrow().grid_position.x + x, reference.borrow().grid_position.y + y, z_min_pos) {
                                    bottom_elements_num += 1;
                                    let u8_color = Vector3 {x: (c.color * 255.0).x.min(255.0).max(0.0) as u8, y: (c.color * 255.0).y.min(255.0).max(0.0) as u8, z: (c.color * 255.0).z.min(255.0).max(0.0) as u8};
                                    bottom_colors.push(u8_color);
                                    bottom_roughness.push(c.roughness);
                                }
                                else {
                                    bottom_colors.push(Vector3 { x: 0, y: 0, z: 0 });
                                    bottom_roughness.push(0);
                                }
                            }
                        }
                        if bottom_elements_num > 0 {
                            reference.borrow_mut().color_bottom = bottom_colors;
                            reference.borrow_mut().roughness_bottom = bottom_roughness;
                        }
                        else {
                            reference.borrow_mut().color_bottom= vec![];
                            reference.borrow_mut().roughness_bottom= vec![];
                        }
                        // MARK: top face of the volume
                        let mut top_colors = vec![];
                        let mut top_roughness = vec![];
                        let mut top_elements_num = 0;
                        for x in 0..x_size+1 {
                            for y in 0..y_size+1 {
                                if let Some(c) = tree.borrow().get_element(reference.borrow().grid_position.x + x, reference.borrow().grid_position.y + y, z_max_pos) {
                                    top_elements_num += 1;
                                    let u8_color = Vector3 {x: (c.color * 255.0).x.min(255.0).max(0.0) as u8, y: (c.color * 255.0).y.min(255.0).max(0.0) as u8, z: (c.color * 255.0).z.min(255.0).max(0.0) as u8};
                                    top_colors.push(u8_color);
                                    top_roughness.push(c.roughness);
                                }
                                else {
                                    top_colors.push(Vector3 { x: 0, y: 0, z: 0 });
                                    top_roughness.push(0);
                                }
                            }
                        }
                        if top_elements_num > 0 {
                            reference.borrow_mut().color_top = top_colors;
                            reference.borrow_mut().roughness_top = top_roughness;
                        }
                        else {
                            reference.borrow_mut().color_top= vec![];
                            reference.borrow_mut().roughness_top= vec![];
                        }

                        // MARK: back face of the volume
                        let mut back_colors = vec![];
                        let mut back_roughness = vec![];
                        let mut back_elements_num = 0;
                        for x in 0..x_size+1 {
                            for z in 0..z_size+1 {
                                if let Some(c) = tree.borrow().get_element(reference.borrow().grid_position.x + x, y_max_pos, reference.borrow().grid_position.z + z) {
                                    back_elements_num += 1;
                                    let u8_color = Vector3 {x: (c.color * 255.0).x.min(255.0).max(0.0) as u8, y: (c.color * 255.0).y.min(255.0).max(0.0) as u8, z: (c.color * 255.0).z.min(255.0).max(0.0) as u8};
                                    back_colors.push(u8_color);
                                    back_roughness.push(c.roughness);
                                }
                                else {
                                    back_colors.push(Vector3 { x: 0, y: 0, z: 0 });
                                    back_roughness.push(0);
                                }
                            }
                        }
                        if back_elements_num > 0 {
                            reference.borrow_mut().color_back = back_colors;
                            reference.borrow_mut().roughness_back = back_roughness;
                        }
                        else {
                            reference.borrow_mut().color_back= vec![];
                            reference.borrow_mut().roughness_back= vec![];
                        }

                        // MARK: front face of the volume
                        let mut front_colors = vec![];
                        let mut front_roughness = vec![];
                        let mut front_elements_num = 0;
                        for x in 0..x_size+1 {
                            for z in 0..z_size+1 {
                                if let Some(c) = tree.borrow().get_element(reference.borrow().grid_position.x + x, y_min_pos, reference.borrow().grid_position.z + z) {
                                    front_elements_num += 1;
                                    let u8_color = Vector3 {x: (c.color * 255.0).x.min(255.0).max(0.0) as u8, y: (c.color * 255.0).y.min(255.0).max(0.0) as u8, z: (c.color * 255.0).z.min(255.0).max(0.0) as u8};
                                    front_colors.push(u8_color);
                                    front_roughness.push(c.roughness);
                                }
                                else {
                                    front_colors.push(Vector3 { x: 0, y: 0, z: 0 });
                                    front_roughness.push(0);
                                }
                            }
                        }
                        if front_elements_num > 0 {
                            reference.borrow_mut().color_front = front_colors;
                            reference.borrow_mut().roughness_front = front_roughness;
                        }
                        else {
                            reference.borrow_mut().color_front= vec![];
                            reference.borrow_mut().roughness_front= vec![];
                        }

                        // MARK: left face of the volume
                        let mut left_colors = vec![];
                        let mut left_roughness = vec![];
                        let mut left_elements_num = 0;
                        for y in 0..y_size+1 {
                            for z in 0..z_size+1 {
                                if let Some(c) = tree.borrow().get_element(x_min_pos, reference.borrow().grid_position.y + y, reference.borrow().grid_position.z + z) {
                                    left_elements_num += 1;
                                    let u8_color = Vector3 {x: (c.color * 255.0).x.min(255.0).max(0.0) as u8, y: (c.color * 255.0).y.min(255.0).max(0.0) as u8, z: (c.color * 255.0).z.min(255.0).max(0.0) as u8};
                                    left_colors.push(u8_color);
                                    left_roughness.push(c.roughness);
                                }
                                else {
                                    left_colors.push(Vector3 { x: 0, y: 0, z: 0 });
                                    left_roughness.push(0);
                                }
                            }
                        }
                        if left_elements_num > 0 {
                            reference.borrow_mut().color_left = left_colors;
                            reference.borrow_mut().roughness_left = left_roughness;
                        }
                        else {
                            reference.borrow_mut().color_left= vec![];
                            reference.borrow_mut().roughness_left= vec![];
                        }

                        // MARK: right face of the volume
                        let mut right_colors = vec![];
                        let mut right_roughness = vec![];
                        let mut right_elements_num = 0;
                        for y in 0..y_size+1 {
                            for z in 0..z_size+1 {
                                if let Some(c) = tree.borrow().get_element(x_max_pos, reference.borrow().grid_position.y + y, reference.borrow().grid_position.z + z) {
                                    right_elements_num += 1;
                                    let u8_color = Vector3 {x: (c.color * 255.0).x.min(255.0).max(0.0) as u8, y: (c.color * 255.0).y.min(255.0).max(0.0) as u8, z: (c.color * 255.0).z.min(255.0).max(0.0) as u8};
                                    right_colors.push(u8_color);
                                    right_roughness.push(c.roughness);
                                }
                                else {
                                    right_colors.push(Vector3 { x: 0, y: 0, z: 0 });
                                    right_roughness.push(0);
                                }
                            }
                        }
                        if right_elements_num > 0 {
                            reference.borrow_mut().color_right = right_colors;
                            reference.borrow_mut().roughness_right = right_roughness;
                        }
                        else {
                            reference.borrow_mut().color_right= vec![];
                            reference.borrow_mut().roughness_right= vec![];
                        }

                        println!("new volume done");
                        //push to the list
                        volumes.push(reference);
                    }
                    z_index += 1
                }
                y_index += 1;
            }
            x_index += 1;
        }
        println!("Did {} oct tree checks!", check_its);
        println!("add the neighbor linkage for all the volumes of the oct tree");
        // MARK: Neighbor Linkage
        for reference in volumes.iter_mut() {
            let x_min_pos;
            if reference.borrow().grid_position.x == 0 {
                // will result in an empty color and roughness map.
                x_min_pos = 0;
            }
            else {
                x_min_pos = reference.borrow().grid_position.x - 1;
            }
            let y_min_pos;
            if reference.borrow().grid_position.y == 0 {
                // will result in an empty color and roughness map.
                y_min_pos = 0;
            }
            else {
                y_min_pos = reference.borrow().grid_position.y - 1;
            }
            let z_min_pos;
            if reference.borrow().grid_position.z == 0 {
                // will result in an empty color and roughness map.
                z_min_pos = 0;
            }
            else {
                z_min_pos = reference.borrow().grid_position.z - 1;
            }
            let x_max_pos = reference.borrow().grid_position.x + reference.borrow().size_x;
            let y_max_pos = reference.borrow().grid_position.y + reference.borrow().size_y;
            let z_max_pos = reference.borrow().grid_position.z + reference.borrow().size_z;
            // MARK: bottom face of the volume
            let mut bottom_neighbors = vec![];
            let mut bottom_elements_num = 0;
            let mut all_same = true;
            if reference.borrow().grid_position.z != 0 {
                for x in 0..reference.borrow().size_x {
                    for y in 0..reference.borrow().size_y {
                        if let Some(c) = neighbors.get_element(reference.borrow().grid_position.x + x, reference.borrow().grid_position.y + y, z_min_pos) {
                            bottom_elements_num += 1;
                            bottom_neighbors.push(Some(c.clone()));
                            all_same = all_same && (bottom_neighbors[0] == Some(c));
                        }
                        else {
                            bottom_neighbors.push(None);
                            all_same = all_same && (bottom_neighbors[0] == None);
                        }
                    }
                }
            }
            if bottom_elements_num > 0 {
                if all_same {
                    reference.borrow_mut().neighbor_bottom = vec![bottom_neighbors[0].clone()];
                }
                else {
                    reference.borrow_mut().neighbor_bottom = bottom_neighbors;
                }
            }
            else {
                reference.borrow_mut().neighbor_bottom = vec![None];
            }
            // MARK: top face of the volume
            let mut top_neighbors = vec![];
            let mut top_elements_num = 0;
            let mut all_same = true;
            for x in 0..reference.borrow().size_x {
                for y in 0..reference.borrow().size_y {
                    if let Some(c) = neighbors.get_element(reference.borrow().grid_position.x + x, reference.borrow().grid_position.y + y, z_max_pos) {
                        top_elements_num += 1;
                        top_neighbors.push(Some(c.clone()));
                        all_same = all_same && (top_neighbors[0] == Some(c));
                    }
                    else {
                        top_neighbors.push(None);
                        all_same = all_same && (top_neighbors[0] == None);
                    }
                }
            }
            if top_elements_num > 0 {
                if all_same {
                    reference.borrow_mut().neighbor_top = vec![top_neighbors[0].clone()];
                }
                else {
                    reference.borrow_mut().neighbor_top = top_neighbors;
                }
            }
            else {
                reference.borrow_mut().neighbor_top = vec![None];
            }

            // MARK: back face of the volume
            let mut back_neighbors = vec![];
            let mut back_elements_num = 0;
            let mut all_same = true;
            for x in 0..reference.borrow().size_x {
                for z in 0..reference.borrow().size_z {
                    if let Some(c) = neighbors.get_element(reference.borrow().grid_position.x + x, y_max_pos, reference.borrow().grid_position.z + z) {
                        back_elements_num += 1;
                        back_neighbors.push(Some(c.clone()));
                        all_same = all_same && (back_neighbors[0] == Some(c));
                    }
                    else {
                        back_neighbors.push(None);
                        all_same = all_same && (back_neighbors[0] == None);
                    }
                }
            }
            if back_elements_num > 0 {
                if all_same {
                    reference.borrow_mut().neighbor_back = vec![back_neighbors[0].clone()];
                }
                else {
                    reference.borrow_mut().neighbor_back = back_neighbors;
                }
            }
            else {
                reference.borrow_mut().neighbor_back = vec![None];
            }

            // MARK: front face of the volume
            let mut front_neighbors = vec![];
            let mut front_elements_num = 0;
            let mut all_same = true;
            if reference.borrow().grid_position.y != 0 {
                for x in 0..reference.borrow().size_x {
                    for z in 0..reference.borrow().size_z {
                        if let Some(c) = neighbors.get_element(reference.borrow().grid_position.x + x, y_min_pos, reference.borrow().grid_position.z + z) {
                            front_elements_num += 1;
                            front_neighbors.push(Some(c.clone()));
                            all_same = all_same && (front_neighbors[0] == Some(c));
                        }
                        else {
                            front_neighbors.push(None);
                            all_same = all_same && (front_neighbors[0] == None);
                        }
                    }
                }
            }
            if front_elements_num > 0 {
                if all_same {
                    reference.borrow_mut().neighbor_front = vec![front_neighbors[0].clone()];
                }
                else {
                    reference.borrow_mut().neighbor_front = front_neighbors;
                }
            }
            else {
                reference.borrow_mut().neighbor_front = vec![None];
            }

            // MARK: left face of the volume
            let mut left_neighbors = vec![];
            let mut left_elements_num = 0;
            let mut all_same = true;
            if reference.borrow().grid_position.x != 0 {
                for y in 0..reference.borrow().size_y {
                    for z in 0..reference.borrow().size_z {
                        if let Some(c) = neighbors.get_element(x_min_pos, reference.borrow().grid_position.y + y, reference.borrow().grid_position.z + z) {
                            left_elements_num += 1;
                            left_neighbors.push(Some(c.clone()));
                            all_same = all_same && (left_neighbors[0] == Some(c));
                        }
                        else {
                            left_neighbors.push(None);
                            all_same = all_same && (left_neighbors[0] == None);
                        }
                    }
                }
            }
            if left_elements_num > 0 {
                if all_same {
                    reference.borrow_mut().neighbor_left = vec![left_neighbors[0].clone()];
                }
                else {
                    reference.borrow_mut().neighbor_left = left_neighbors;
                }
            }
            else {
                reference.borrow_mut().neighbor_left = vec![None];
            }

            // MARK: right face of the volume
            let mut right_neighbors = vec![];
            let mut right_elements_num = 0;
            let mut all_same = true;
            for y in 0..reference.borrow().size_y {
                for z in 0..reference.borrow().size_z {
                    if let Some(c) = neighbors.get_element(x_max_pos, reference.borrow().grid_position.y + y, reference.borrow().grid_position.z + z) {
                        right_elements_num += 1;
                        right_neighbors.push(Some(c.clone()));
                        all_same = all_same && (right_neighbors[0] == Some(c));
                    }
                    else {
                        right_neighbors.push(None);
                        all_same = all_same && (right_neighbors[0] == None);
                    }
                }
            }
            if right_elements_num > 0 {
                if all_same {
                    reference.borrow_mut().neighbor_right = vec![right_neighbors[0].clone()];
                }
                else {
                    reference.borrow_mut().neighbor_right = right_neighbors;
                }
            }
            else {
                reference.borrow_mut().neighbor_right = vec![None];
            }
        }
        println!("volume creation took {} s", start_time.elapsed().as_millis() as f32 / 1000.0);
        (volumes, neighbors)
    }

    fn check_quad_index(u: usize, v: usize, vsize: usize, size1: usize, size2: usize, colors: &Vec<Vector3<u8>>, neighbors: &Vec<Option<Rc<RefCell<EmptyVolume>>>>) -> bool {
        let index = (u + size1) * vsize + (v + size2);
        if colors.len() <= index {
            return false;
            
        }
        if neighbors.len() > index || neighbors.len() == 1 {
            if let Some(_) = neighbors[index.min(neighbors.len() - 1)] {
                if colors[index] == (Vector3 {x: 0, y: 0, z: 0}) {
                    return false;
                }
            }
        }
        return true
    }

    fn grow_quad(u: usize, v: usize, size_u: usize, size_v: usize, colors: &Vec<Vector3<u8>>, neighbors: &Vec<Option<Rc<RefCell<EmptyVolume>>>>) -> (usize, usize) {
        let mut size_1 = 0;
        let mut size_2 = 0;
        let mut grow = true;
        let mut v_size_check = 0;
        while grow {
            for u_size_check in 0..size_u - u {
                if EmptyVolume::check_quad_index(u, v, size_v, u_size_check, v_size_check, colors, neighbors) {
                    size_1 = size_1.max(u_size_check);
                } else {
                    grow = false;
                    break;
                }
            }
            if grow {
                size_2 = v_size_check;
            }
            v_size_check += 1;
        }

        (size_1, size_2)    
    }

    // MARK: To Quads
    pub fn to_quads(&self) -> Vec<Quad> {
        let mut quads = vec![];
        let float_pos = self.real_position;
        //bottom sides of the volumes, top side of the block
        let mut done = vec![];
        for x in 0..self.size_x {
            for y in 0..self.size_y {
                if done.contains(&(x, y)) {
                    continue;
                }
                
                if !EmptyVolume::check_quad_index(x, y, self.size_y, 0, 0, &self.color_bottom, &self.neighbor_bottom) {
                    continue;
                }
                
                let (size_1, size_2) = EmptyVolume::grow_quad(x, y, self.size_x, self.size_y, &self.color_bottom, &self.neighbor_bottom);
                
                done.push((x, y));
                for done_x in 0..size_1 + 1 {
                    for done_y in 0..size_2 + 1 {
                        done.push((x + done_x, y + done_y));
                    }
                }
                

                let quad = Quad {
                    pos1: float_pos + Vector3 { x: -0.5 + x as f32, y: -0.5 + y as f32, z: -0.5 } * self.scale,
                    pos4: float_pos + Vector3 { x: 0.5 + (x + size_1) as f32, y: -0.5 + y as f32, z: -0.5 } * self.scale, 
                    pos3: float_pos + Vector3 { x: 0.5 + (x + size_1) as f32, y: 0.5 + (y + size_2) as f32, z: -0.5 } * self.scale, 
                    pos2: float_pos + Vector3 { x: -0.5 + x as f32, y: 0.5 + (y + size_2) as f32, z: -0.5 } * self.scale, 
                    raster_pos: cgmath::Vector2 { x: x as u32, y: y as u32 }, 
                    size: cgmath::Vector2 { x: (size_1 + 1) as u32, y: (size_2 + 1) as u32 },
                    volume_index: self.memory_start as u32,
                    facing: vertex::Facing::Bottom
                };
                quads.push(quad);
            }
        }
        //top sides of the volumes, bottom side of the block
        let mut done = vec![];
        for x in 0..self.size_x {
            for y in 0..self.size_y {
                if done.contains(&(x, y)) {
                    continue;
                }
                
                if !EmptyVolume::check_quad_index(x, y, self.size_y, 0, 0, &self.color_top, &self.neighbor_top) {
                    continue;
                }
                
                let (size_1, size_2) = EmptyVolume::grow_quad(x, y, self.size_x, self.size_y, &self.color_top, &self.neighbor_top);

                done.push((x, y));
                for done_x in 0..size_1 + 1 {
                    for done_y in 0..size_2 + 1 {
                        done.push((x + done_x, y + done_y));
                    }
                }
                let quad = Quad {
                    pos1: float_pos + Vector3 { x: -0.5 + x as f32, y: -0.5 + y as f32, z: self.size_z as f32 - 0.5 } * self.scale,
                    pos4: float_pos + Vector3 { x: 0.5 + (x + size_1) as f32, y: -0.5 + y as f32, z: self.size_z as f32 - 0.5 } * self.scale, 
                    pos3: float_pos + Vector3 { x: 0.5 + (x + size_1) as f32, y: 0.5 + (y + size_2) as f32, z: self.size_z as f32 - 0.5 } * self.scale, 
                    pos2: float_pos + Vector3 { x: -0.5 + x as f32, y: 0.5 + (y + size_2) as f32, z: self.size_z as f32 - 0.5 } * self.scale, 
                    raster_pos: cgmath::Vector2 { x: x as u32, y: y as u32 }, 
                    size: cgmath::Vector2 { x: (size_1 + 1) as u32, y: (size_2 + 1) as u32 },
                    volume_index: self.memory_start as u32,
                    facing: vertex::Facing::Top
                };
                quads.push(quad);
            }
        }

        //front sides of the volumes, back side of the block
        let mut done = vec![];
        for x in 0..self.size_x {
            for z in 0..self.size_z {
                if done.contains(&(x, z)) {
                    continue;
                }
                
                if !EmptyVolume::check_quad_index(x, z, self.size_z, 0, 0, &self.color_front, &self.neighbor_front) {
                    continue;
                }
                
                let (size_1, size_2) = EmptyVolume::grow_quad(x, z, self.size_x, self.size_z, &self.color_front, &self.neighbor_front);

                done.push((x, z));
                for done_x in 0..size_1 + 1 {
                    for done_z in 0..size_2 + 1 {
                        done.push((x + done_x, z + done_z));
                    }
                }
                let quad = Quad {
                    pos2: float_pos + Vector3 { x: -0.5 + x as f32, y: -0.5 + 0 as f32, z: z as f32 - 0.5 } * self.scale,
                    pos1: float_pos + Vector3 { x: -0.5 + x as f32, y: -0.5 + 0 as f32, z: (z + size_2) as f32 + 0.5 } * self.scale, 
                    pos4: float_pos + Vector3 { x: 0.5 + (x + size_1) as f32, y: -0.5 + 0 as f32, z: (z + size_2) as f32 + 0.5 } * self.scale, 
                    pos3: float_pos + Vector3 { x: 0.5 + (x + size_1) as f32, y: -0.5 + 0 as f32, z: z as f32 - 0.5 } * self.scale, 
                    raster_pos: cgmath::Vector2 { x: x as u32, y: z as u32 }, 
                    size: cgmath::Vector2 { x: (size_1 + 1) as u32, y: (size_2 + 1) as u32 },
                    volume_index: self.memory_start as u32,
                    facing: vertex::Facing::Front
                };
                quads.push(quad);
            }
        }

        //back sides of the volumes, front side of the block
        let mut done = vec![];
        for x in 0..self.size_x {
            for z in 0..self.size_z {
                if done.contains(&(x, z)) {
                    continue;
                }
                
                if !EmptyVolume::check_quad_index(x, z, self.size_z, 0, 0, &self.color_back, &self.neighbor_back) {
                    continue;
                }
                
                let (size_1, size_2) = EmptyVolume::grow_quad(x, z, self.size_x, self.size_z, &self.color_back, &self.neighbor_back);

                done.push((x, z));
                for done_x in 0..size_1 + 1 {
                    for done_z in 0..size_2 + 1 {
                        done.push((x + done_x, z + done_z));
                    }
                }
                let quad = Quad {
                    pos1: float_pos + Vector3 { x: -0.5 + x as f32, y: -0.5 + self.size_y as f32, z: z as f32 - 0.5 } * self.scale,
                    pos2: float_pos + Vector3 { x: -0.5 + x as f32, y: -0.5 + self.size_y as f32, z: (z + size_2) as f32 + 0.5 } * self.scale, 
                    pos3: float_pos + Vector3 { x: 0.5 + (x + size_1) as f32, y: -0.5 + self.size_y as f32, z: (z + size_2) as f32 + 0.5 } * self.scale, 
                    pos4: float_pos + Vector3 { x: 0.5 + (x + size_1) as f32, y: -0.5 + self.size_y as f32, z: z as f32 - 0.5 } * self.scale, 
                    raster_pos: cgmath::Vector2 { x: x as u32, y: z as u32 }, 
                    size: cgmath::Vector2 { x: (size_1 + 1) as u32, y: (size_2 + 1) as u32 },
                    volume_index: self.memory_start as u32,
                    facing: vertex::Facing::Back
                };
                quads.push(quad);
            }
        }

        //left sides of the volumes, right side of the block
        let mut done = vec![];
        for y in 0..self.size_y {
            for z in 0..self.size_z {
                if done.contains(&(y, z)) {
                    continue;
                }
                
                if !EmptyVolume::check_quad_index(y, z, self.size_z, 0, 0, &self.color_left, &self.neighbor_left) {
                    continue;
                }
                
                let (size_1, size_2) = EmptyVolume::grow_quad(y, z, self.size_y, self.size_z, &self.color_left, &self.neighbor_left);

                done.push((y, z));
                for done_y in 0..size_1 + 1 {
                    for done_z in 0..size_2 + 1 {
                        done.push((y + done_y, z + done_z));
                    }
                }
                let quad = Quad {
                    pos1: float_pos + Vector3 { x: -0.5 + 0.0 as f32, y: y as f32 - 0.5, z: z as f32 - 0.5 } * self.scale,
                    pos2: float_pos + Vector3 { x: -0.5 + 0.0 as f32, y: y as f32 - 0.5, z: (z + size_2) as f32 + 0.5 } * self.scale, 
                    pos3: float_pos + Vector3 { x: -0.5 + 0.0 as f32, y: (y + size_1) as f32 + 0.5, z: (z + size_2) as f32 + 0.5 } * self.scale, 
                    pos4: float_pos + Vector3 { x: -0.5 + 0.0 as f32, y: (y + size_1) as f32 + 0.5, z: z as f32 - 0.5 } * self.scale, 
                    raster_pos: cgmath::Vector2 { x: y as u32, y: z as u32 }, 
                    size: cgmath::Vector2 { x: (size_1 + 1) as u32, y: (size_2 + 1) as u32 },
                    volume_index: self.memory_start as u32,
                    facing: vertex::Facing::Left
                };
                quads.push(quad);
            }
        }

        //right sides of the volumes, left side of the block
        let mut done = vec![];
        for y in 0..self.size_y {
            for z in 0..self.size_z {
                if done.contains(&(y, z)) {
                    continue;
                }
                
                if !EmptyVolume::check_quad_index(y, z, self.size_z, 0, 0, &self.color_right, &self.neighbor_right) {
                    continue;
                }
                
                let (size_1, size_2) = EmptyVolume::grow_quad(y, z, self.size_y, self.size_z, &self.color_right, &self.neighbor_right);

                done.push((y, z));
                for done_y in 0..size_1 + 1 {
                    for done_z in 0..size_2 + 1 {
                        done.push((y + done_y, z + done_z));
                    }
                }
                let quad = Quad {
                    pos2: float_pos + Vector3 { x: -0.5 + self.size_x as f32, y: y as f32 - 0.5, z: z as f32 - 0.5 } * self.scale,
                    pos1: float_pos + Vector3 { x: -0.5 + self.size_x as f32, y: y as f32 - 0.5, z: (z + size_2) as f32 + 0.5 } * self.scale, 
                    pos4: float_pos + Vector3 { x: -0.5 + self.size_x as f32, y: (y + size_1) as f32 + 0.5, z: (z + size_2) as f32 + 0.5 } * self.scale, 
                    pos3: float_pos + Vector3 { x: -0.5 + self.size_x as f32, y: (y + size_1) as f32 + 0.5, z: z as f32 - 0.5 } * self.scale, 
                    raster_pos: cgmath::Vector2 { x: y as u32, y: z as u32 }, 
                    size: cgmath::Vector2 { x: (size_1 + 1) as u32, y: (size_2 + 1) as u32 },
                    volume_index: self.memory_start as u32,
                    facing: vertex::Facing::Right
                };
                quads.push(quad);
            }
        }
        quads
    }
    
    pub fn select_lights(&self, lights: LightsIter, light_number: u32, min_light_weight: f32) -> Vec<u32> {
        let mut weighted_indices = vec![];
        for light in lights {
            let mut has_hitable_side = false;
            if self.color_bottom.len() > 0 {
                let center = self.real_position + Vector3{x: self.size_x as f32 * 0.5, y: self.size_y as f32 * 0.5, z: self.size_z as f32 * 0.0 - 0.5} * self.scale;
                let normal = Vector3 {x: 0.0, y: 0.0, z: 1.0};

                let dir = light.borrow().get_direction(center);
                if normal.dot(dir) < 0.0 {
                    has_hitable_side = true;
                }
            }
            if self.color_top.len() > 0 {
                let center = self.real_position + Vector3{x: self.size_x as f32 * 0.5, y: self.size_y as f32 * 0.5, z: self.size_z as f32 * 1.0 - 0.5} * self.scale;
                let normal = Vector3 {x: 0.0, y: 0.0, z: -1.0};

                let dir = light.borrow().get_direction(center);
                if normal.dot(dir) < 0.0 {
                    has_hitable_side = true;
                }
            }

            if self.color_front.len() > 0 {
                let center = self.real_position + Vector3{x: self.size_x as f32 * 0.5, y: self.size_y as f32 * 0.0 - 0.5, z: self.size_z as f32 * 0.5} * self.scale;
                let normal = Vector3 {x: 0.0, y: 1.0, z: 0.0};

                let dir = light.borrow().get_direction(center);
                if normal.dot(dir) < 0.0 {
                    has_hitable_side = true;
                }
            }

            if self.color_back.len() > 0 {
                let center = self.real_position + Vector3{x: self.size_x as f32 * 0.5, y: self.size_y as f32 * 1.0 - 0.5, z: self.size_z as f32 * 0.5} * self.scale;
                let normal = Vector3 {x: 0.0, y: -1.0, z: 0.0};

                let dir = light.borrow().get_direction(center);
                if normal.dot(dir) < 0.0 {
                    has_hitable_side = true;
                }
            }

            if self.color_left.len() > 0 {
                let center = self.real_position + Vector3{x: self.size_x as f32 * 0.0 - 0.5, y: self.size_y as f32 * 0.5, z: self.size_z as f32 * 0.5} * self.scale;
                let normal = Vector3 {x: 1.0, y: 0.0, z: 0.0};

                let dir = light.borrow().get_direction(center);
                if normal.dot(dir) < 0.0 {
                    has_hitable_side = true;
                }
            }

            if self.color_right.len() > 0 {
                let center = self.real_position + Vector3{x: self.size_x as f32 * 1.0 - 0.5, y: self.size_y as f32 * 0.5, z: self.size_z as f32 * 0.5} * self.scale;
                let normal = Vector3 {x: -1.0, y: 0.0, z: 0.0};

                let dir = light.borrow().get_direction(center);
                if normal.dot(dir) < 0.0 {
                    has_hitable_side = true;
                }
            }

            if !has_hitable_side {
                continue;
            }
            let weight = light.borrow().weighted_distance(self.real_position, Vector3{x: self.size_x as f32, y: self.size_y as f32, z: self.size_z as f32} * self.scale);
            if weight >= min_light_weight {
                weighted_indices.push((weight, light.borrow().get_memory_start()));
            }
        }
        weighted_indices.sort_by(|a, b| a.0.partial_cmp(&b.0).unwrap());

        let mut out_index = vec![];
        for index in 0..weighted_indices.len() {
            out_index.push(weighted_indices[weighted_indices.len() - (index + 1)].1 as u32);
            if out_index.len() == light_number as usize {
                break;
            }
        }
        while out_index.len() < light_number as usize {
            out_index.push(0);
        }
        out_index
    }

    pub fn combine_results(first: &Rc<RefCell<OctTree<Cube>>>,first_neighbors: &Rc<OctTree<Rc<RefCell<EmptyVolume>>>>, second: &Rc<RefCell<OctTree<Cube>>>, second_neighbors: &Rc<OctTree<Rc<RefCell<EmptyVolume>>>>, facing: vertex::Facing) {
        let mut first_start;
        let mut second_start;

        let step_one;
        let step_two;

        match facing {
            vertex::Facing::Back => {
                first_start = Vector3{x: 0, y: first.borrow().size - 1, z: 0};
                second_start = Vector3{x: 0, y: 0, z: 0};

                step_one = Vector3{x: 1, y: 0, z: 0};
                step_two = Vector3{x: 0, y: 0, z: 1};
            },
            vertex::Facing::Front => {
                first_start = Vector3{x: 0, y: 0, z: 0};
                second_start = Vector3{x: 0, y: first.borrow().size - 1, z: 0};
    
                step_one = Vector3{x: 1, y: 0, z: 0};
                step_two = Vector3{x: 0, y: 0, z: 1};
            },
            vertex::Facing::Top => {
                first_start = Vector3{x: 0, y: 0, z: first.borrow().size - 1};
                second_start = Vector3{x: 0, y: 0, z: 0};
    
                step_one = Vector3{x: 1, y: 0, z: 0};
                step_two = Vector3{x: 0, y: 1, z: 0};
            },
            vertex::Facing::Bottom => {
                first_start = Vector3{x: 0, y: 0, z: 0};
                second_start = Vector3{x: 0, y: 0, z: first.borrow().size - 1};
    
                step_one = Vector3{x: 1, y: 0, z: 0};
                step_two = Vector3{x: 0, y: 1, z: 0};
            },
            vertex::Facing::Left => {
                first_start = Vector3{x: 0, y: 0, z: 0};
                second_start = Vector3{x: first.borrow().size - 1, y: 0, z: 0};
    
                step_one = Vector3{x: 0, y: 1, z: 0};
                step_two = Vector3{x: 0, y: 0, z: 1};
            },
            vertex::Facing::Right => {
                first_start = Vector3{x: first.borrow().size - 1, y: 0, z: 0};
                second_start = Vector3{x: 0, y: 0, z: 0};
    
                step_one = Vector3{x: 0, y: 1, z: 0};
                step_two = Vector3{x: 0, y: 0, z: 1};
            }
        }

        let mut done_volumes = vec![];

        for u in 0..first.borrow().size {
            for v in 0..first.borrow().size {
                let first_pos = first_start + v * step_two + u * step_one;
                let second_pos = second_start + v * step_two + u * step_one;
                let volume_option = first_neighbors.get_element(first_pos.x, first_pos.y, first_pos.z);
                if let Some(volume) = volume_option {
                    if !done_volumes.contains(&volume) {
                        
                        let mask = Vector3 {x: 1, y: 1, z: 1} - (step_one + step_two);
                        let negated_mask = (step_one + step_two);

                        let volume_start_first = negated_mask.mul_element_wise(volume.borrow().grid_position) + first_pos.mul_element_wise(mask);
                        let volume_start_second = negated_mask.mul_element_wise(volume.borrow().grid_position) + second_pos.mul_element_wise(mask);

                        let size_u;
                        let size_v;
                        if negated_mask.x == 1 {
                            size_u = volume.borrow().size_x;
                            if negated_mask.y == 1 {
                                size_v = volume.borrow().size_y;
                            } else {
                                size_v = volume.borrow().size_z;
                            }
                        } else {
                            size_u = volume.borrow().size_y;
                            size_v = volume.borrow().size_z;
                        }

                        let mut new_colors = vec![];
                        let mut new_roughness = vec![];
                        let mut new_neighbors = vec![];
                        let mut color_elements = 0;
                        let mut neighbor_elements = 0;
                        let mut all_same = true;
                        for volume_u in 0..size_u {
                            for volume_v in 0..size_v {
                                let pos = second_pos + volume_u * step_one + volume_v * step_two;
                                let new_neighbor = second_neighbors.get_element(pos.x, pos.y, pos.z);
                                let new_cube = second.borrow().get_element(pos.x, pos.y, pos.z);

                                if let Some(c) = new_cube {
                                    let u8_color = Vector3 {x: (c.color * 255.0).x.min(255.0).max(0.0) as u8, y: (c.color * 255.0).y.min(255.0).max(0.0) as u8, z: (c.color * 255.0).z.min(255.0).max(0.0) as u8};
                                    new_colors.push(u8_color);
                                    new_roughness.push(c.roughness);
                                    color_elements += 1;
                                } else {
                                    new_colors.push(Vector3 { x: 0, y: 0, z: 0 });
                                    new_roughness.push(0);
                                }

                                if let Some(n) = new_neighbor {
                                    neighbor_elements += 1;
                                    new_neighbors.push(Some(n.clone()));
                                    all_same = all_same && (new_neighbors[0] == Some(n));
                                } else {
                                    new_neighbors.push(None);
                                    all_same = all_same && (new_neighbors[0] == None);
                                }
                            } 
                        }
                        
                        if color_elements > 0 {
                            new_colors = new_colors;
                            new_roughness = new_roughness;
                        }
                        else {
                            new_colors= vec![];
                            new_roughness = vec![];
                        }

                        if neighbor_elements > 0 {
                            if all_same {
                                new_neighbors = vec![new_neighbors[0].clone()];
                            }
                            else {
                                new_neighbors = new_neighbors;
                            }
                        }
                        else {
                            new_neighbors = vec![None];
                        }

                        match facing {
                            vertex::Facing::Back => {
                                volume.borrow_mut().color_back = new_colors;
                                volume.borrow_mut().roughness_back = new_roughness;
                                volume.borrow_mut().neighbor_back = new_neighbors;
                            },
                            vertex::Facing::Front => {
                                volume.borrow_mut().color_front = new_colors;
                                volume.borrow_mut().roughness_front = new_roughness;
                                volume.borrow_mut().neighbor_front = new_neighbors;
                            },
                            vertex::Facing::Top => {
                                volume.borrow_mut().color_top = new_colors;
                                volume.borrow_mut().roughness_top = new_roughness;
                                volume.borrow_mut().neighbor_top = new_neighbors;
                            },
                            vertex::Facing::Bottom => {
                                volume.borrow_mut().color_bottom = new_colors;
                                volume.borrow_mut().roughness_bottom = new_roughness;
                                volume.borrow_mut().neighbor_bottom = new_neighbors;
                            },
                            vertex::Facing::Left => {
                                volume.borrow_mut().color_left = new_colors;
                                volume.borrow_mut().roughness_left = new_roughness;
                                volume.borrow_mut().neighbor_left = new_neighbors;
                            },
                            vertex::Facing::Right => {
                                volume.borrow_mut().color_right = new_colors;
                                volume.borrow_mut().roughness_right = new_roughness;
                                volume.borrow_mut().neighbor_right = new_neighbors;
                            },
                        }
                        
                        done_volumes.push(volume);
                    }
                }
            }
        }
    }
}

impl Memorizable for EmptyVolume {
    // MARK: Get Buffer Mem Size
    fn get_buffer_mem_size(&self,  data: &AppData) -> u32 {
        let mut mem_size: u32 = 0;
        mem_size += 3; //pos
        mem_size += 3; //max sizes
        mem_size += data.num_lights_per_volume; // light references
        mem_size += 12; //color/roughness buffer sizes, 2 values each
        mem_size += 12; //neighbor buffer sizes, 2 values each
        mem_size += 1; //scale of the volume, 1 float

        // this covers full color and roughness
        mem_size += (self.color_top.len() as u32).max(1);
        mem_size += (self.color_bottom.len() as u32).max(1);
        mem_size += (self.color_left.len() as u32).max(1);
        mem_size += (self.color_right.len() as u32).max(1);
        mem_size += (self.color_front.len() as u32).max(1);
        mem_size += (self.color_back.len() as u32).max(1);

        mem_size += (self.neighbor_top.len() as u32).max(1);
        mem_size += (self.neighbor_bottom.len() as u32).max(1);
        mem_size += (self.neighbor_left.len() as u32).max(1);
        mem_size += (self.neighbor_right.len() as u32).max(1);
        mem_size += (self.neighbor_front.len() as u32).max(1);
        mem_size += (self.neighbor_back.len() as u32).max(1);

        mem_size
    }
    // MARK: insert into Memory
    fn insert_into_memory(&mut self, mut v: Vec<u32>, data: &AppData, scene: &Scene) -> Vec<u32> {
        let mut mem_index = self.memory_start;
        //pos
        v[mem_index] = u32::from_ne_bytes(self.real_position.x.to_ne_bytes());
        mem_index += 1;
        v[mem_index] = u32::from_ne_bytes(self.real_position.y.to_ne_bytes());
        mem_index += 1;
        v[mem_index] = u32::from_ne_bytes(self.real_position.z.to_ne_bytes());
        mem_index += 1;
        //max sizes
        v[mem_index] = self.size_x as u32;
        mem_index += 1;
        v[mem_index] = self.size_y as u32;
        mem_index += 1;
        v[mem_index] = self.size_z as u32;
        mem_index += 1;
        //Todo: insert lights
        let selected_lights = self.select_lights(scene.get_light_iter(), data.num_lights_per_volume, data.min_light_weight);
        for light in selected_lights {
            v[mem_index] = light;
            mem_index += 1;
        }
        //color/roughness buffer sizes, 2 values each
        if self.color_top.len() > 1 {
            v[mem_index] = self.size_x as u32;
            v[mem_index + 1] = self.size_y as u32; 
        } else {
            v[mem_index] = 1;
            v[mem_index + 1] = 1;
        }
        mem_index += 2;

        if self.color_bottom.len() > 1 {
            v[mem_index] = self.size_x as u32;
            v[mem_index + 1] = self.size_y as u32; 
        } else {
            v[mem_index] = 1;
            v[mem_index + 1] = 1;
        }
        mem_index += 2;

        if self.color_left.len() > 1 {
            v[mem_index] = self.size_y as u32;
            v[mem_index + 1] = self.size_z as u32; 
        } else {
            v[mem_index] = 1;
            v[mem_index + 1] = 1;
        }
        mem_index += 2;

        if self.color_right.len() > 1 {
            v[mem_index] = self.size_y as u32;
            v[mem_index + 1] = self.size_z as u32; 
        } else {
            v[mem_index] = 1;
            v[mem_index + 1] = 1;
        }
        mem_index += 2;

        if self.color_front.len() > 1 {
            v[mem_index] = self.size_x as u32;
            v[mem_index + 1] = self.size_z as u32; 
        } else {
            v[mem_index] = 1;
            v[mem_index + 1] = 1;
        }
        mem_index += 2;

        if self.color_back.len() > 1 {
            v[mem_index] = self.size_x as u32;
            v[mem_index + 1] = self.size_z as u32; 
        } else {
            v[mem_index] = 1;
            v[mem_index + 1] = 1;
        }
        mem_index += 2;
        //neighbor buffer sizes, 2 values each
        if self.neighbor_top.len() > 1 {
            v[mem_index] = self.size_x as u32;
            v[mem_index + 1] = self.size_y as u32; 
        } else {
            v[mem_index] = 1;
            v[mem_index + 1] = 1;
        }
        mem_index += 2;

        if self.neighbor_bottom.len() > 1 {
            v[mem_index] = self.size_x as u32;
            v[mem_index + 1] = self.size_y as u32; 
        } else {
            v[mem_index] = 1;
            v[mem_index + 1] = 1;
        }
        mem_index += 2;

        if self.neighbor_left.len() > 1 {
            v[mem_index] = self.size_y as u32;
            v[mem_index + 1] = self.size_z as u32; 
        } else {
            v[mem_index] = 1;
            v[mem_index + 1] = 1;
        }
        mem_index += 2;

        if self.neighbor_right.len() > 1 {
            v[mem_index] = self.size_y as u32;
            v[mem_index + 1] = self.size_z as u32; 
        } else {
            v[mem_index] = 1;
            v[mem_index + 1] = 1;
        }
        mem_index += 2;

        if self.neighbor_front.len() > 1 {
            v[mem_index] = self.size_x as u32;
            v[mem_index + 1] = self.size_z as u32; 
        } else {
            v[mem_index] = 1;
            v[mem_index + 1] = 1;
        }
        mem_index += 2;

        if self.neighbor_back.len() > 1 {
            v[mem_index] = self.size_x as u32;
            v[mem_index + 1] = self.size_z as u32; 
        } else {
            v[mem_index] = 1;
            v[mem_index + 1] = 1;
        }
        mem_index += 2;

        // scale factor
        v[mem_index] = u32::from_ne_bytes(self.scale.to_ne_bytes());
        mem_index += 1;

        //color and roughness
        //check which endian should be used in conjunction of the graphics card (might already be handled by vulkan)
        if self.color_top.len() > 0 {
            for index in 0..self.color_top.len() {
                let value = &self.color_top[index];
                let roughness = self.roughness_top[index];
                let test : u32 = 5;
                v[mem_index] = u32::from_ne_bytes([value.x, value.y, value.z, roughness]);
                mem_index += 1;
            }
        }
        else {
            v[mem_index] = u32::from_ne_bytes([0, 0, 0, 0]);
            mem_index += 1;
        }

        if self.color_bottom.len() > 0 {
            for index in 0..self.color_bottom.len() {
                let value = &self.color_bottom[index];
                let roughness = self.roughness_bottom[index];
                let test : u32 = 5;
                v[mem_index] = u32::from_ne_bytes([value.x, value.y, value.z, roughness]);
                mem_index += 1;
            }
        }
        else {
            v[mem_index] = u32::from_ne_bytes([0, 0, 0, 0]);
            mem_index += 1;
        }
        
        if self.color_left.len() > 0 {
            for index in 0..self.color_left.len() {
                let value = &self.color_left[index];
                let roughness = self.roughness_left[index];
                let test : u32 = 5;
                v[mem_index] = u32::from_ne_bytes([value.x, value.y, value.z, roughness]);
                mem_index += 1;
            }
        }
        else {
            v[mem_index] = u32::from_ne_bytes([0, 0, 0, 0]);
            mem_index += 1;
        }
        
        if self.color_right.len() > 0 {
            for index in 0..self.color_right.len() {
                let value = &self.color_right[index];
                let roughness = self.roughness_right[index];
                let test : u32 = 5;
                v[mem_index] = u32::from_ne_bytes([value.x, value.y, value.z, roughness]);
                mem_index += 1;
            }
        }
        else {
            v[mem_index] = u32::from_ne_bytes([0, 0, 0, 0]);
            mem_index += 1;
        }

        if self.color_front.len() > 0 {
            for index in 0..self.color_front.len() {
                let value = &self.color_front[index];
                let roughness = self.roughness_front[index];
                let test : u32 = 5;
                v[mem_index] = u32::from_ne_bytes([value.x, value.y, value.z, roughness]);
                mem_index += 1;
            }
        }
        else {
            v[mem_index] = u32::from_ne_bytes([0, 0, 0, 0]);
            mem_index += 1;
        }
        
        if self.color_back.len() > 0 {
            for index in 0..self.color_back.len() {
                let value = &self.color_back[index];
                let roughness = self.roughness_back[index];
                let test : u32 = 5;
                v[mem_index] = u32::from_ne_bytes([value.x, value.y, value.z, roughness]);
                mem_index += 1;
            }
        }
        else {
            v[mem_index] = u32::from_ne_bytes([0, 0, 0, 0]);
            mem_index += 1;
        }

        // neighbors
        if self.neighbor_top.len() > 0 {
            for nvalue in &self.neighbor_top {
                if let Some(reference) = nvalue {
                    v[mem_index] = reference.borrow().memory_start as u32;
                }
                else {
                    v[mem_index] = 0;
                }
                mem_index += 1;
            }
        }
        else {
            v[mem_index] = 0;
            mem_index += 1;
        }

        if self.neighbor_bottom.len() > 0 {
            for nvalue in &self.neighbor_bottom {
                if let Some(reference) = nvalue {
                    v[mem_index] = reference.borrow().memory_start as u32;
                }
                else {
                    v[mem_index] = 0;
                }
                mem_index += 1;
            }
        }
        else {
            v[mem_index] = 0;
            mem_index += 1;
        }

        if self.neighbor_left.len() > 0 {
            for nvalue in &self.neighbor_left {
                if let Some(reference) = nvalue {
                    v[mem_index] = reference.borrow().memory_start as u32;
                }
                else {
                    v[mem_index] = 0;
                }
                mem_index += 1;
            }
        }
        else {
            v[mem_index] = 0;
            mem_index += 1;
        }

        if self.neighbor_right.len() > 0 {
            for nvalue in &self.neighbor_right {
                if let Some(reference) = nvalue {
                    v[mem_index] = reference.borrow().memory_start as u32;
                }
                else {
                    v[mem_index] = 0;
                }
                mem_index += 1;
            }
        }
        else {
            v[mem_index] = 0;
            mem_index += 1;
        }

        if self.neighbor_front.len() > 0 {
            for nvalue in &self.neighbor_front {
                if let Some(reference) = nvalue {
                    v[mem_index] = reference.borrow().memory_start as u32;
                }
                else {
                    v[mem_index] = 0;
                }
                mem_index += 1;
            }
        }
        else {
            v[mem_index] = 0;
            mem_index += 1;
        }

        if self.neighbor_back.len() > 0 {
            for nvalue in &self.neighbor_back {
                if let Some(reference) = nvalue {
                    v[mem_index] = reference.borrow().memory_start as u32;
                }
                else {
                    v[mem_index] = 0;
                }
                mem_index += 1;
            }
        }
        else {
            v[mem_index] = 0;
            mem_index += 1;
        }

        self.dirty = false;
        self.old_memory_size = self.get_buffer_mem_size(data);
        //println!("last memory index of volume was {}, equivalent to {}kB", mem_index, mem_index * 32 / 8 / 1024);
        v
    }

    fn get_memory_start(&self) -> usize {
        self.memory_start
    }

    fn set_memory_start(&mut self, memory_start: usize) {
        self.memory_start = memory_start;
    }

    fn get_prev_buffer_mem_size(&self) -> u32 {
        self.old_memory_size
    }
    fn is_dirty(&self) -> bool {
        self.dirty
    }
}

impl PartialEq for EmptyVolume {
    fn eq(&self, other: &Self) -> bool {
        self.grid_position == other.grid_position
            && self.size_x == other.size_x
            && self.size_y == other.size_y
            && self.size_z == other.size_z
    }
}