use cgmath::{ElementWise, InnerSpace, Vector3}; use std::cell::{RefCell, Ref}; use std::rc::Rc; use std::time::Instant; use crate::vertex; use crate::primitives::cube::Cube; use crate::primitives::quad::Quad; use crate::scene::oct_tree::OctTree; use super::memorizable::Memorizable; use super::light::LightSource; use super::light::PointLight; use super::AppData; use super::LightsIter; use super::Scene; #[derive(Clone, Debug)] pub struct EmptyVolume { pub memory_start: usize, pub size_x: usize, pub size_y: usize, pub size_z: usize, pub grid_position: Vector3<usize>, pub real_position: Vector3<f32>, pub color_left: Vec<Vector3<u8>>, pub color_right: Vec<Vector3<u8>>, pub color_top: Vec<Vector3<u8>>, pub color_bottom: Vec<Vector3<u8>>, pub color_back: Vec<Vector3<u8>>, pub color_front: Vec<Vector3<u8>>, pub roughness_left: Vec<u8>, pub roughness_right: Vec<u8>, pub roughness_top: Vec<u8>, pub roughness_bottom: Vec<u8>, pub roughness_back: Vec<u8>, pub roughness_front: Vec<u8>, pub neighbor_left: Vec<Option<Rc<RefCell<Self>>>>, pub neighbor_right: Vec<Option<Rc<RefCell<Self>>>>, pub neighbor_top: Vec<Option<Rc<RefCell<Self>>>>, pub neighbor_bottom: Vec<Option<Rc<RefCell<Self>>>>, pub neighbor_back: Vec<Option<Rc<RefCell<Self>>>>, pub neighbor_front: Vec<Option<Rc<RefCell<Self>>>>, pub scale: f32, old_memory_size: u32, dirty: bool, } impl EmptyVolume { pub fn contains_grid_pos(&self, pos: &Vector3<usize>) -> bool { self.grid_position[0] + self.size_x > pos[0] && pos[0] >= self.grid_position[0] && self.grid_position[1] + self.size_y > pos[1] && pos[1] >= self.grid_position[1] && self.grid_position[2] + self.size_z > pos[2] && pos[2] >= self.grid_position[2] } pub fn contains_real_pos(&self, pos: &Vector3<f32>) -> bool { self.real_position[0] + self.size_x as f32 > pos[0] && pos[0] >= self.real_position[0] && self.real_position[1] + self.size_y as f32 > pos[1] && pos[1] >= self.real_position[1] && self.real_position[2] + self.size_z as f32 > pos[2] && pos[2] >= self.real_position[2] } fn check_transparent(cube_result: Option<Cube>, transparent_color: &Vector3<f32>, transparent_roughness: &u8) -> bool { if let Some(c) = cube_result { return c.transparent && &c.color == transparent_color && &c.roughness == transparent_roughness } false } // MARK: From Oct Tree pub fn from_oct_tree(tree: &Rc<RefCell<OctTree<Cube>>>, tree_pos: Vector3<f32>) -> (Vec<Rc<RefCell<EmptyVolume>>>, OctTree<Rc<RefCell<EmptyVolume>>>) { // todo: ppotentially use a child exist check while going through the oct tree to find some obvios starting empty volumes. Will still need to check for possible expansions though let mut volumes: Vec<Rc<RefCell<EmptyVolume>>> = vec![]; let mut neighbors: OctTree<Rc<RefCell<EmptyVolume>>> = OctTree::create(tree.borrow().size, tree.borrow().scale).unwrap(); let start_time = Instant::now(); // iterate over all block positions in the oct tree let mut check_its = 0; let mut x_index = 0; while x_index < tree.borrow().size { let mut y_index = 0; while y_index < tree.borrow().size { let mut z_index = 0; while z_index < tree.borrow().size { // check if there is a block at that position let query_result = tree.borrow().test_element(x_index, y_index, z_index); let mut transparent = false; let mut transparent_color = Vector3 {x: 0.0, y: 0.0, z: 0.0}; let mut tranparent_roughness = 0; if let Some(c) = query_result.3 { transparent = c.transparent; transparent_color = c.color; tranparent_roughness = c.roughness; } if !query_result.0 || transparent { //if not check that it is not already inside of a volume let mut contained = false; for volume in &volumes { if volume.borrow().contains_grid_pos(&Vector3{x: x_index, y: y_index, z: z_index}) { contained = true; z_index = volume.borrow().size_z + volume.borrow().grid_position.z; break; } } if contained { // abort if it is already covered continue; } println!("new starting pos: {}, {}, {}", x_index, y_index, z_index); // MARK: Start new Volume let mut x_size = 0; let mut y_size = 0; let mut z_size = 0; let neighbor_result = neighbors.test_element(x_index, y_index, z_index); if query_result.1 > 1 && query_result.2.0 >= neighbor_result.2.0 && query_result.2.1 >= neighbor_result.2.1 && query_result.2.2 >= neighbor_result.2.2 && query_result.1 <= neighbor_result.1 { x_size = query_result.1 - 1 - (x_index - query_result.2.0); y_size = query_result.1 - 1 - (y_index - query_result.2.1); z_size = query_result.1 - 1 - (z_index - query_result.2.2); println!("enhanced starting size: {}, {}, {}", x_size+1, y_size+1, z_size+1); } println!("start growing volume x"); let mut grow = true; while grow { grow &= (x_index + x_size + 1) < tree.borrow().size; if grow { let mut z = 0; let mut y = 0; while z < z_size + 1 && y < y_size + 1 { let query_result = tree.borrow().test_element(x_index + x_size + 1, y_index + y, z_index + z); let neighbor_result = neighbors.test_element(x_index + x_size + 1, y_index + y, z_index + z); check_its += 1; grow &= ((!query_result.0 && !transparent) || (transparent && EmptyVolume::check_transparent(query_result.3, &transparent_color, &tranparent_roughness))) && !neighbor_result.0; if !grow { break; } if query_result.1 > 1 && query_result.2.1 >= neighbor_result.2.1 && query_result.2.2 >= neighbor_result.2.2 && query_result.1 <= neighbor_result.1 { let start_x = query_result.2.0; let start_y = query_result.2.1; let start_z = query_result.2.2; let end_x = query_result.2.0 + query_result.1; let end_y = query_result.2.1 + query_result.1; let end_z = query_result.2.2 + query_result.1; if start_z <= z_index + z && z_index + z_size <= end_z { // we can skip iterating z z = end_z - z_index; if start_y <= y_index + y && y_index + y_size <= end_y && start_z <= z_index { // we can skip iterating y y = end_y - y_index; z = 0; continue; } } } z += 1; if z >= z_size + 1 { z = 0; y += 1; } } } if grow { x_size += 1; } } println!("start growing volume y"); grow = true; while grow { grow &= (y_index + y_size + 1) < tree.borrow().size; if grow { let mut z = 0; let mut x = 0; while z < z_size + 1 && x < x_size + 1 { let query_result = tree.borrow().test_element(x_index + x, y_index + y_size + 1, z_index + z); let neighbor_result = neighbors.test_element(x_index + x, y_index + y_size + 1, z_index + z); check_its += 1; grow &= ((!query_result.0 && !transparent) || (transparent && EmptyVolume::check_transparent(query_result.3, &transparent_color, &tranparent_roughness))) && !neighbor_result.0; if !grow { break; } if query_result.1 > 1 && query_result.2.0 >= neighbor_result.2.0 && query_result.2.2 >= neighbor_result.2.2 && query_result.1 <= neighbor_result.1 { let start_x = query_result.2.0; let start_y = query_result.2.1; let start_z = query_result.2.2; let end_x = query_result.2.0 + query_result.1; let end_y = query_result.2.1 + query_result.1; let end_z = query_result.2.2 + query_result.1; if start_z <= z_index + z && z_index + z_size <= end_z { // we can skip iterating z z = end_z - z_index; if start_x <= x_index + x && x_index + x_size <= end_x && start_z <= z_index { // we can skip iterating x x = end_x - x_index; z = 0; continue; } } } z += 1; if z >= z_size + 1 { z = 0; x += 1; } } } if grow { y_size += 1; } } println!("start growing volume z"); grow = true; while grow { grow &= (z_index + z_size + 1) < tree.borrow().size; if grow { let mut y = 0; let mut x = 0; while y < y_size + 1 && x < x_size + 1 { let query_result = tree.borrow().test_element(x_index + x, y_index + y, z_index + z_size + 1); let neighbor_result = neighbors.test_element(x_index + x, y_index + y, z_index + z_size + 1); check_its += 1; grow &= ((!query_result.0 && !transparent) || (transparent && EmptyVolume::check_transparent(query_result.3, &transparent_color, &tranparent_roughness))) && !neighbor_result.0; if !grow { break; } if query_result.1 > 1 && query_result.2.1 >= neighbor_result.2.1 && query_result.2.0 >= neighbor_result.2.0 && query_result.1 <= neighbor_result.1 { let start_x = query_result.2.0; let start_y = query_result.2.1; let start_z = query_result.2.2; let end_x = query_result.2.0 + query_result.1; let end_y = query_result.2.1 + query_result.1; let end_z = query_result.2.2 + query_result.1; if start_x <= x_index + x && x_index + x_size <= end_x { // we can skip iterating x x = end_x - x_index; if start_y <= y_index + y && y_index + y_size <= end_y && start_x <= x_index { // we can skip iterating y y = end_y - y_index; x = 0; continue; } } } x += 1; if x >= x_size + 1 { x = 0; y += 1; } } } if grow { z_size += 1; } } println!("final size: {}, {}, {}", x_size+1, y_size+1, z_size+1); // create new empty volume let new_volume = EmptyVolume { memory_start: 0, size_x: x_size + 1, size_y: y_size + 1, size_z: z_size + 1, grid_position: Vector3{x: x_index, y: y_index, z: z_index}, real_position: tree_pos + Vector3{x: x_index as f32 * tree.borrow().scale, y: y_index as f32 * tree.borrow().scale, z: z_index as f32 * tree.borrow().scale}, color_left: vec![], color_right: vec![], color_top: vec![], color_bottom: vec![], color_back: vec![], color_front: vec![], roughness_left: vec![], roughness_right: vec![], roughness_top: vec![], roughness_bottom: vec![], roughness_back: vec![], roughness_front: vec![], neighbor_left: vec![], neighbor_right: vec![], neighbor_top: vec![], neighbor_bottom: vec![], neighbor_back: vec![], neighbor_front: vec![], scale: tree.borrow().scale, old_memory_size: 0, dirty: true, }; println!("adding neighbor references"); // MARK: fill in info in the neighbor octtree let reference = Rc::new(RefCell::new(new_volume)); for x in 0..x_size+1 { for y in 0..y_size+1 { for z in 0..z_size+1 { neighbors.set_element(reference.clone(), reference.borrow().grid_position.x + x, reference.borrow().grid_position.y + y, reference.borrow().grid_position.z + z); // fill only the edges /*if x == 0 || x == x_size || y == 0 || y == y_size || z==0 || z == z_size { neighbors.set_element(reference.clone(), reference.borrow().position.x + x, reference.borrow().position.y + y, reference.borrow().position.z + z) }*/ } } } println!("add the border information for color and roughness"); let x_min_pos; if reference.borrow().grid_position.x == 0 { // will result in an empty color and roughness map. x_min_pos = 0; } else { x_min_pos = reference.borrow().grid_position.x -1; } let y_min_pos; if reference.borrow().grid_position.y == 0 { // will result in an empty color and roughness map. y_min_pos = 0; } else { y_min_pos = reference.borrow().grid_position.y -1; } let z_min_pos; if reference.borrow().grid_position.z == 0 { // will result in an empty color and roughness map. z_min_pos = 0; } else { z_min_pos = reference.borrow().grid_position.z -1; } let x_max_pos = reference.borrow().grid_position.x + reference.borrow().size_x; let y_max_pos = reference.borrow().grid_position.y + reference.borrow().size_y; let z_max_pos = reference.borrow().grid_position.z + reference.borrow().size_z; // MARK: bottom face of the volume let mut bottom_colors = vec![]; let mut bottom_roughness = vec![]; let mut bottom_elements_num = 0; for x in 0..x_size+1 { for y in 0..y_size+1 { if let Some(c) = tree.borrow().get_element(reference.borrow().grid_position.x + x, reference.borrow().grid_position.y + y, z_min_pos) { bottom_elements_num += 1; let u8_color = Vector3 {x: (c.color * 255.0).x.min(255.0).max(0.0) as u8, y: (c.color * 255.0).y.min(255.0).max(0.0) as u8, z: (c.color * 255.0).z.min(255.0).max(0.0) as u8}; bottom_colors.push(u8_color); bottom_roughness.push(c.roughness); } else { bottom_colors.push(Vector3 { x: 0, y: 0, z: 0 }); bottom_roughness.push(0); } } } if bottom_elements_num > 0 { reference.borrow_mut().color_bottom = bottom_colors; reference.borrow_mut().roughness_bottom = bottom_roughness; } else { reference.borrow_mut().color_bottom= vec![]; reference.borrow_mut().roughness_bottom= vec![]; } // MARK: top face of the volume let mut top_colors = vec![]; let mut top_roughness = vec![]; let mut top_elements_num = 0; for x in 0..x_size+1 { for y in 0..y_size+1 { if let Some(c) = tree.borrow().get_element(reference.borrow().grid_position.x + x, reference.borrow().grid_position.y + y, z_max_pos) { top_elements_num += 1; let u8_color = Vector3 {x: (c.color * 255.0).x.min(255.0).max(0.0) as u8, y: (c.color * 255.0).y.min(255.0).max(0.0) as u8, z: (c.color * 255.0).z.min(255.0).max(0.0) as u8}; top_colors.push(u8_color); top_roughness.push(c.roughness); } else { top_colors.push(Vector3 { x: 0, y: 0, z: 0 }); top_roughness.push(0); } } } if top_elements_num > 0 { reference.borrow_mut().color_top = top_colors; reference.borrow_mut().roughness_top = top_roughness; } else { reference.borrow_mut().color_top= vec![]; reference.borrow_mut().roughness_top= vec![]; } // MARK: back face of the volume let mut back_colors = vec![]; let mut back_roughness = vec![]; let mut back_elements_num = 0; for x in 0..x_size+1 { for z in 0..z_size+1 { if let Some(c) = tree.borrow().get_element(reference.borrow().grid_position.x + x, y_max_pos, reference.borrow().grid_position.z + z) { back_elements_num += 1; let u8_color = Vector3 {x: (c.color * 255.0).x.min(255.0).max(0.0) as u8, y: (c.color * 255.0).y.min(255.0).max(0.0) as u8, z: (c.color * 255.0).z.min(255.0).max(0.0) as u8}; back_colors.push(u8_color); back_roughness.push(c.roughness); } else { back_colors.push(Vector3 { x: 0, y: 0, z: 0 }); back_roughness.push(0); } } } if back_elements_num > 0 { reference.borrow_mut().color_back = back_colors; reference.borrow_mut().roughness_back = back_roughness; } else { reference.borrow_mut().color_back= vec![]; reference.borrow_mut().roughness_back= vec![]; } // MARK: front face of the volume let mut front_colors = vec![]; let mut front_roughness = vec![]; let mut front_elements_num = 0; for x in 0..x_size+1 { for z in 0..z_size+1 { if let Some(c) = tree.borrow().get_element(reference.borrow().grid_position.x + x, y_min_pos, reference.borrow().grid_position.z + z) { front_elements_num += 1; let u8_color = Vector3 {x: (c.color * 255.0).x.min(255.0).max(0.0) as u8, y: (c.color * 255.0).y.min(255.0).max(0.0) as u8, z: (c.color * 255.0).z.min(255.0).max(0.0) as u8}; front_colors.push(u8_color); front_roughness.push(c.roughness); } else { front_colors.push(Vector3 { x: 0, y: 0, z: 0 }); front_roughness.push(0); } } } if front_elements_num > 0 { reference.borrow_mut().color_front = front_colors; reference.borrow_mut().roughness_front = front_roughness; } else { reference.borrow_mut().color_front= vec![]; reference.borrow_mut().roughness_front= vec![]; } // MARK: left face of the volume let mut left_colors = vec![]; let mut left_roughness = vec![]; let mut left_elements_num = 0; for y in 0..y_size+1 { for z in 0..z_size+1 { if let Some(c) = tree.borrow().get_element(x_min_pos, reference.borrow().grid_position.y + y, reference.borrow().grid_position.z + z) { left_elements_num += 1; let u8_color = Vector3 {x: (c.color * 255.0).x.min(255.0).max(0.0) as u8, y: (c.color * 255.0).y.min(255.0).max(0.0) as u8, z: (c.color * 255.0).z.min(255.0).max(0.0) as u8}; left_colors.push(u8_color); left_roughness.push(c.roughness); } else { left_colors.push(Vector3 { x: 0, y: 0, z: 0 }); left_roughness.push(0); } } } if left_elements_num > 0 { reference.borrow_mut().color_left = left_colors; reference.borrow_mut().roughness_left = left_roughness; } else { reference.borrow_mut().color_left= vec![]; reference.borrow_mut().roughness_left= vec![]; } // MARK: right face of the volume let mut right_colors = vec![]; let mut right_roughness = vec![]; let mut right_elements_num = 0; for y in 0..y_size+1 { for z in 0..z_size+1 { if let Some(c) = tree.borrow().get_element(x_max_pos, reference.borrow().grid_position.y + y, reference.borrow().grid_position.z + z) { right_elements_num += 1; let u8_color = Vector3 {x: (c.color * 255.0).x.min(255.0).max(0.0) as u8, y: (c.color * 255.0).y.min(255.0).max(0.0) as u8, z: (c.color * 255.0).z.min(255.0).max(0.0) as u8}; right_colors.push(u8_color); right_roughness.push(c.roughness); } else { right_colors.push(Vector3 { x: 0, y: 0, z: 0 }); right_roughness.push(0); } } } if right_elements_num > 0 { reference.borrow_mut().color_right = right_colors; reference.borrow_mut().roughness_right = right_roughness; } else { reference.borrow_mut().color_right= vec![]; reference.borrow_mut().roughness_right= vec![]; } println!("new volume done"); //push to the list volumes.push(reference); } z_index += 1 } y_index += 1; } x_index += 1; } println!("Did {} oct tree checks!", check_its); println!("add the neighbor linkage for all the volumes of the oct tree"); // MARK: Neighbor Linkage for reference in volumes.iter_mut() { let x_min_pos; if reference.borrow().grid_position.x == 0 { // will result in an empty color and roughness map. x_min_pos = 0; } else { x_min_pos = reference.borrow().grid_position.x - 1; } let y_min_pos; if reference.borrow().grid_position.y == 0 { // will result in an empty color and roughness map. y_min_pos = 0; } else { y_min_pos = reference.borrow().grid_position.y - 1; } let z_min_pos; if reference.borrow().grid_position.z == 0 { // will result in an empty color and roughness map. z_min_pos = 0; } else { z_min_pos = reference.borrow().grid_position.z - 1; } let x_max_pos = reference.borrow().grid_position.x + reference.borrow().size_x; let y_max_pos = reference.borrow().grid_position.y + reference.borrow().size_y; let z_max_pos = reference.borrow().grid_position.z + reference.borrow().size_z; // MARK: bottom face of the volume let mut bottom_neighbors = vec![]; let mut bottom_elements_num = 0; let mut all_same = true; if reference.borrow().grid_position.z != 0 { for x in 0..reference.borrow().size_x { for y in 0..reference.borrow().size_y { if let Some(c) = neighbors.get_element(reference.borrow().grid_position.x + x, reference.borrow().grid_position.y + y, z_min_pos) { bottom_elements_num += 1; bottom_neighbors.push(Some(c.clone())); all_same = all_same && (bottom_neighbors[0] == Some(c)); } else { bottom_neighbors.push(None); all_same = all_same && (bottom_neighbors[0] == None); } } } } if bottom_elements_num > 0 { if all_same { reference.borrow_mut().neighbor_bottom = vec![bottom_neighbors[0].clone()]; } else { reference.borrow_mut().neighbor_bottom = bottom_neighbors; } } else { reference.borrow_mut().neighbor_bottom = vec![None]; } // MARK: top face of the volume let mut top_neighbors = vec![]; let mut top_elements_num = 0; let mut all_same = true; for x in 0..reference.borrow().size_x { for y in 0..reference.borrow().size_y { if let Some(c) = neighbors.get_element(reference.borrow().grid_position.x + x, reference.borrow().grid_position.y + y, z_max_pos) { top_elements_num += 1; top_neighbors.push(Some(c.clone())); all_same = all_same && (top_neighbors[0] == Some(c)); } else { top_neighbors.push(None); all_same = all_same && (top_neighbors[0] == None); } } } if top_elements_num > 0 { if all_same { reference.borrow_mut().neighbor_top = vec![top_neighbors[0].clone()]; } else { reference.borrow_mut().neighbor_top = top_neighbors; } } else { reference.borrow_mut().neighbor_top = vec![None]; } // MARK: back face of the volume let mut back_neighbors = vec![]; let mut back_elements_num = 0; let mut all_same = true; for x in 0..reference.borrow().size_x { for z in 0..reference.borrow().size_z { if let Some(c) = neighbors.get_element(reference.borrow().grid_position.x + x, y_max_pos, reference.borrow().grid_position.z + z) { back_elements_num += 1; back_neighbors.push(Some(c.clone())); all_same = all_same && (back_neighbors[0] == Some(c)); } else { back_neighbors.push(None); all_same = all_same && (back_neighbors[0] == None); } } } if back_elements_num > 0 { if all_same { reference.borrow_mut().neighbor_back = vec![back_neighbors[0].clone()]; } else { reference.borrow_mut().neighbor_back = back_neighbors; } } else { reference.borrow_mut().neighbor_back = vec![None]; } // MARK: front face of the volume let mut front_neighbors = vec![]; let mut front_elements_num = 0; let mut all_same = true; if reference.borrow().grid_position.y != 0 { for x in 0..reference.borrow().size_x { for z in 0..reference.borrow().size_z { if let Some(c) = neighbors.get_element(reference.borrow().grid_position.x + x, y_min_pos, reference.borrow().grid_position.z + z) { front_elements_num += 1; front_neighbors.push(Some(c.clone())); all_same = all_same && (front_neighbors[0] == Some(c)); } else { front_neighbors.push(None); all_same = all_same && (front_neighbors[0] == None); } } } } if front_elements_num > 0 { if all_same { reference.borrow_mut().neighbor_front = vec![front_neighbors[0].clone()]; } else { reference.borrow_mut().neighbor_front = front_neighbors; } } else { reference.borrow_mut().neighbor_front = vec![None]; } // MARK: left face of the volume let mut left_neighbors = vec![]; let mut left_elements_num = 0; let mut all_same = true; if reference.borrow().grid_position.x != 0 { for y in 0..reference.borrow().size_y { for z in 0..reference.borrow().size_z { if let Some(c) = neighbors.get_element(x_min_pos, reference.borrow().grid_position.y + y, reference.borrow().grid_position.z + z) { left_elements_num += 1; left_neighbors.push(Some(c.clone())); all_same = all_same && (left_neighbors[0] == Some(c)); } else { left_neighbors.push(None); all_same = all_same && (left_neighbors[0] == None); } } } } if left_elements_num > 0 { if all_same { reference.borrow_mut().neighbor_left = vec![left_neighbors[0].clone()]; } else { reference.borrow_mut().neighbor_left = left_neighbors; } } else { reference.borrow_mut().neighbor_left = vec![None]; } // MARK: right face of the volume let mut right_neighbors = vec![]; let mut right_elements_num = 0; let mut all_same = true; for y in 0..reference.borrow().size_y { for z in 0..reference.borrow().size_z { if let Some(c) = neighbors.get_element(x_max_pos, reference.borrow().grid_position.y + y, reference.borrow().grid_position.z + z) { right_elements_num += 1; right_neighbors.push(Some(c.clone())); all_same = all_same && (right_neighbors[0] == Some(c)); } else { right_neighbors.push(None); all_same = all_same && (right_neighbors[0] == None); } } } if right_elements_num > 0 { if all_same { reference.borrow_mut().neighbor_right = vec![right_neighbors[0].clone()]; } else { reference.borrow_mut().neighbor_right = right_neighbors; } } else { reference.borrow_mut().neighbor_right = vec![None]; } } println!("volume creation took {} s", start_time.elapsed().as_millis() as f32 / 1000.0); (volumes, neighbors) } fn check_quad_index(u: usize, v: usize, vsize: usize, size1: usize, size2: usize, colors: &Vec<Vector3<u8>>, neighbors: &Vec<Option<Rc<RefCell<EmptyVolume>>>>) -> bool { let index = (u + size1) * vsize + (v + size2); if colors.len() <= index { return false; } if neighbors.len() > index || neighbors.len() == 1 { if let Some(_) = neighbors[index.min(neighbors.len() - 1)] { if colors[index] == (Vector3 {x: 0, y: 0, z: 0}) { return false; } } } return true } fn grow_quad(u: usize, v: usize, size_u: usize, size_v: usize, colors: &Vec<Vector3<u8>>, neighbors: &Vec<Option<Rc<RefCell<EmptyVolume>>>>) -> (usize, usize) { let mut size_1 = 0; let mut size_2 = 0; let mut grow = true; let mut v_size_check = 0; while grow { for u_size_check in 0..size_u - u { if EmptyVolume::check_quad_index(u, v, size_v, u_size_check, v_size_check, colors, neighbors) { size_1 = size_1.max(u_size_check); } else { grow = false; break; } } if grow { size_2 = v_size_check; } v_size_check += 1; } (size_1, size_2) } // MARK: To Quads pub fn to_quads(&self) -> Vec<Quad> { let mut quads = vec![]; let float_pos = self.real_position; //bottom sides of the volumes, top side of the block let mut done = vec![]; for x in 0..self.size_x { for y in 0..self.size_y { if done.contains(&(x, y)) { continue; } if !EmptyVolume::check_quad_index(x, y, self.size_y, 0, 0, &self.color_bottom, &self.neighbor_bottom) { continue; } let (size_1, size_2) = EmptyVolume::grow_quad(x, y, self.size_x, self.size_y, &self.color_bottom, &self.neighbor_bottom); done.push((x, y)); for done_x in 0..size_1 + 1 { for done_y in 0..size_2 + 1 { done.push((x + done_x, y + done_y)); } } let quad = Quad { pos1: float_pos + Vector3 { x: -0.5 + x as f32, y: -0.5 + y as f32, z: -0.5 } * self.scale, pos4: float_pos + Vector3 { x: 0.5 + (x + size_1) as f32, y: -0.5 + y as f32, z: -0.5 } * self.scale, pos3: float_pos + Vector3 { x: 0.5 + (x + size_1) as f32, y: 0.5 + (y + size_2) as f32, z: -0.5 } * self.scale, pos2: float_pos + Vector3 { x: -0.5 + x as f32, y: 0.5 + (y + size_2) as f32, z: -0.5 } * self.scale, raster_pos: cgmath::Vector2 { x: x as u32, y: y as u32 }, size: cgmath::Vector2 { x: (size_1 + 1) as u32, y: (size_2 + 1) as u32 }, volume_index: self.memory_start as u32, facing: vertex::Facing::Bottom }; quads.push(quad); } } //top sides of the volumes, bottom side of the block let mut done = vec![]; for x in 0..self.size_x { for y in 0..self.size_y { if done.contains(&(x, y)) { continue; } if !EmptyVolume::check_quad_index(x, y, self.size_y, 0, 0, &self.color_top, &self.neighbor_top) { continue; } let (size_1, size_2) = EmptyVolume::grow_quad(x, y, self.size_x, self.size_y, &self.color_top, &self.neighbor_top); done.push((x, y)); for done_x in 0..size_1 + 1 { for done_y in 0..size_2 + 1 { done.push((x + done_x, y + done_y)); } } let quad = Quad { pos1: float_pos + Vector3 { x: -0.5 + x as f32, y: -0.5 + y as f32, z: self.size_z as f32 - 0.5 } * self.scale, pos4: float_pos + Vector3 { x: 0.5 + (x + size_1) as f32, y: -0.5 + y as f32, z: self.size_z as f32 - 0.5 } * self.scale, pos3: float_pos + Vector3 { x: 0.5 + (x + size_1) as f32, y: 0.5 + (y + size_2) as f32, z: self.size_z as f32 - 0.5 } * self.scale, pos2: float_pos + Vector3 { x: -0.5 + x as f32, y: 0.5 + (y + size_2) as f32, z: self.size_z as f32 - 0.5 } * self.scale, raster_pos: cgmath::Vector2 { x: x as u32, y: y as u32 }, size: cgmath::Vector2 { x: (size_1 + 1) as u32, y: (size_2 + 1) as u32 }, volume_index: self.memory_start as u32, facing: vertex::Facing::Top }; quads.push(quad); } } //front sides of the volumes, back side of the block let mut done = vec![]; for x in 0..self.size_x { for z in 0..self.size_z { if done.contains(&(x, z)) { continue; } if !EmptyVolume::check_quad_index(x, z, self.size_z, 0, 0, &self.color_front, &self.neighbor_front) { continue; } let (size_1, size_2) = EmptyVolume::grow_quad(x, z, self.size_x, self.size_z, &self.color_front, &self.neighbor_front); done.push((x, z)); for done_x in 0..size_1 + 1 { for done_z in 0..size_2 + 1 { done.push((x + done_x, z + done_z)); } } let quad = Quad { pos2: float_pos + Vector3 { x: -0.5 + x as f32, y: -0.5 + 0 as f32, z: z as f32 - 0.5 } * self.scale, pos1: float_pos + Vector3 { x: -0.5 + x as f32, y: -0.5 + 0 as f32, z: (z + size_2) as f32 + 0.5 } * self.scale, pos4: float_pos + Vector3 { x: 0.5 + (x + size_1) as f32, y: -0.5 + 0 as f32, z: (z + size_2) as f32 + 0.5 } * self.scale, pos3: float_pos + Vector3 { x: 0.5 + (x + size_1) as f32, y: -0.5 + 0 as f32, z: z as f32 - 0.5 } * self.scale, raster_pos: cgmath::Vector2 { x: x as u32, y: z as u32 }, size: cgmath::Vector2 { x: (size_1 + 1) as u32, y: (size_2 + 1) as u32 }, volume_index: self.memory_start as u32, facing: vertex::Facing::Front }; quads.push(quad); } } //back sides of the volumes, front side of the block let mut done = vec![]; for x in 0..self.size_x { for z in 0..self.size_z { if done.contains(&(x, z)) { continue; } if !EmptyVolume::check_quad_index(x, z, self.size_z, 0, 0, &self.color_back, &self.neighbor_back) { continue; } let (size_1, size_2) = EmptyVolume::grow_quad(x, z, self.size_x, self.size_z, &self.color_back, &self.neighbor_back); done.push((x, z)); for done_x in 0..size_1 + 1 { for done_z in 0..size_2 + 1 { done.push((x + done_x, z + done_z)); } } let quad = Quad { pos1: float_pos + Vector3 { x: -0.5 + x as f32, y: -0.5 + self.size_y as f32, z: z as f32 - 0.5 } * self.scale, pos2: float_pos + Vector3 { x: -0.5 + x as f32, y: -0.5 + self.size_y as f32, z: (z + size_2) as f32 + 0.5 } * self.scale, pos3: float_pos + Vector3 { x: 0.5 + (x + size_1) as f32, y: -0.5 + self.size_y as f32, z: (z + size_2) as f32 + 0.5 } * self.scale, pos4: float_pos + Vector3 { x: 0.5 + (x + size_1) as f32, y: -0.5 + self.size_y as f32, z: z as f32 - 0.5 } * self.scale, raster_pos: cgmath::Vector2 { x: x as u32, y: z as u32 }, size: cgmath::Vector2 { x: (size_1 + 1) as u32, y: (size_2 + 1) as u32 }, volume_index: self.memory_start as u32, facing: vertex::Facing::Back }; quads.push(quad); } } //left sides of the volumes, right side of the block let mut done = vec![]; for y in 0..self.size_y { for z in 0..self.size_z { if done.contains(&(y, z)) { continue; } if !EmptyVolume::check_quad_index(y, z, self.size_z, 0, 0, &self.color_left, &self.neighbor_left) { continue; } let (size_1, size_2) = EmptyVolume::grow_quad(y, z, self.size_y, self.size_z, &self.color_left, &self.neighbor_left); done.push((y, z)); for done_y in 0..size_1 + 1 { for done_z in 0..size_2 + 1 { done.push((y + done_y, z + done_z)); } } let quad = Quad { pos1: float_pos + Vector3 { x: -0.5 + 0.0 as f32, y: y as f32 - 0.5, z: z as f32 - 0.5 } * self.scale, pos2: float_pos + Vector3 { x: -0.5 + 0.0 as f32, y: y as f32 - 0.5, z: (z + size_2) as f32 + 0.5 } * self.scale, pos3: float_pos + Vector3 { x: -0.5 + 0.0 as f32, y: (y + size_1) as f32 + 0.5, z: (z + size_2) as f32 + 0.5 } * self.scale, pos4: float_pos + Vector3 { x: -0.5 + 0.0 as f32, y: (y + size_1) as f32 + 0.5, z: z as f32 - 0.5 } * self.scale, raster_pos: cgmath::Vector2 { x: y as u32, y: z as u32 }, size: cgmath::Vector2 { x: (size_1 + 1) as u32, y: (size_2 + 1) as u32 }, volume_index: self.memory_start as u32, facing: vertex::Facing::Left }; quads.push(quad); } } //right sides of the volumes, left side of the block let mut done = vec![]; for y in 0..self.size_y { for z in 0..self.size_z { if done.contains(&(y, z)) { continue; } if !EmptyVolume::check_quad_index(y, z, self.size_z, 0, 0, &self.color_right, &self.neighbor_right) { continue; } let (size_1, size_2) = EmptyVolume::grow_quad(y, z, self.size_y, self.size_z, &self.color_right, &self.neighbor_right); done.push((y, z)); for done_y in 0..size_1 + 1 { for done_z in 0..size_2 + 1 { done.push((y + done_y, z + done_z)); } } let quad = Quad { pos2: float_pos + Vector3 { x: -0.5 + self.size_x as f32, y: y as f32 - 0.5, z: z as f32 - 0.5 } * self.scale, pos1: float_pos + Vector3 { x: -0.5 + self.size_x as f32, y: y as f32 - 0.5, z: (z + size_2) as f32 + 0.5 } * self.scale, pos4: float_pos + Vector3 { x: -0.5 + self.size_x as f32, y: (y + size_1) as f32 + 0.5, z: (z + size_2) as f32 + 0.5 } * self.scale, pos3: float_pos + Vector3 { x: -0.5 + self.size_x as f32, y: (y + size_1) as f32 + 0.5, z: z as f32 - 0.5 } * self.scale, raster_pos: cgmath::Vector2 { x: y as u32, y: z as u32 }, size: cgmath::Vector2 { x: (size_1 + 1) as u32, y: (size_2 + 1) as u32 }, volume_index: self.memory_start as u32, facing: vertex::Facing::Right }; quads.push(quad); } } quads } pub fn select_lights(&self, lights: LightsIter, light_number: u32, min_light_weight: f32) -> Vec<u32> { let mut weighted_indices = vec![]; for light in lights { let mut has_hitable_side = false; if self.color_bottom.len() > 0 { let center = self.real_position + Vector3{x: self.size_x as f32 * 0.5, y: self.size_y as f32 * 0.5, z: self.size_z as f32 * 0.0 - 0.5} * self.scale; let normal = Vector3 {x: 0.0, y: 0.0, z: 1.0}; let dir = light.borrow().get_direction(center); if normal.dot(dir) < 0.0 { has_hitable_side = true; } } if self.color_top.len() > 0 { let center = self.real_position + Vector3{x: self.size_x as f32 * 0.5, y: self.size_y as f32 * 0.5, z: self.size_z as f32 * 1.0 - 0.5} * self.scale; let normal = Vector3 {x: 0.0, y: 0.0, z: -1.0}; let dir = light.borrow().get_direction(center); if normal.dot(dir) < 0.0 { has_hitable_side = true; } } if self.color_front.len() > 0 { let center = self.real_position + Vector3{x: self.size_x as f32 * 0.5, y: self.size_y as f32 * 0.0 - 0.5, z: self.size_z as f32 * 0.5} * self.scale; let normal = Vector3 {x: 0.0, y: 1.0, z: 0.0}; let dir = light.borrow().get_direction(center); if normal.dot(dir) < 0.0 { has_hitable_side = true; } } if self.color_back.len() > 0 { let center = self.real_position + Vector3{x: self.size_x as f32 * 0.5, y: self.size_y as f32 * 1.0 - 0.5, z: self.size_z as f32 * 0.5} * self.scale; let normal = Vector3 {x: 0.0, y: -1.0, z: 0.0}; let dir = light.borrow().get_direction(center); if normal.dot(dir) < 0.0 { has_hitable_side = true; } } if self.color_left.len() > 0 { let center = self.real_position + Vector3{x: self.size_x as f32 * 0.0 - 0.5, y: self.size_y as f32 * 0.5, z: self.size_z as f32 * 0.5} * self.scale; let normal = Vector3 {x: 1.0, y: 0.0, z: 0.0}; let dir = light.borrow().get_direction(center); if normal.dot(dir) < 0.0 { has_hitable_side = true; } } if self.color_right.len() > 0 { let center = self.real_position + Vector3{x: self.size_x as f32 * 1.0 - 0.5, y: self.size_y as f32 * 0.5, z: self.size_z as f32 * 0.5} * self.scale; let normal = Vector3 {x: -1.0, y: 0.0, z: 0.0}; let dir = light.borrow().get_direction(center); if normal.dot(dir) < 0.0 { has_hitable_side = true; } } if !has_hitable_side { continue; } let weight = light.borrow().weighted_distance(self.real_position, Vector3{x: self.size_x as f32, y: self.size_y as f32, z: self.size_z as f32} * self.scale); if weight >= min_light_weight { weighted_indices.push((weight, light.borrow().get_memory_start())); } } weighted_indices.sort_by(|a, b| a.0.partial_cmp(&b.0).unwrap()); let mut out_index = vec![]; for index in 0..weighted_indices.len() { out_index.push(weighted_indices[weighted_indices.len() - (index + 1)].1 as u32); if out_index.len() == light_number as usize { break; } } while out_index.len() < light_number as usize { out_index.push(0); } out_index } pub fn combine_results(first: &Rc<RefCell<OctTree<Cube>>>,first_neighbors: &Rc<OctTree<Rc<RefCell<EmptyVolume>>>>, second: &Rc<RefCell<OctTree<Cube>>>, second_neighbors: &Rc<OctTree<Rc<RefCell<EmptyVolume>>>>, facing: vertex::Facing) { let mut first_start; let mut second_start; let step_one; let step_two; match facing { vertex::Facing::Back => { first_start = Vector3{x: 0, y: first.borrow().size - 1, z: 0}; second_start = Vector3{x: 0, y: 0, z: 0}; step_one = Vector3{x: 1, y: 0, z: 0}; step_two = Vector3{x: 0, y: 0, z: 1}; }, vertex::Facing::Front => { first_start = Vector3{x: 0, y: 0, z: 0}; second_start = Vector3{x: 0, y: first.borrow().size - 1, z: 0}; step_one = Vector3{x: 1, y: 0, z: 0}; step_two = Vector3{x: 0, y: 0, z: 1}; }, vertex::Facing::Top => { first_start = Vector3{x: 0, y: 0, z: first.borrow().size - 1}; second_start = Vector3{x: 0, y: 0, z: 0}; step_one = Vector3{x: 1, y: 0, z: 0}; step_two = Vector3{x: 0, y: 1, z: 0}; }, vertex::Facing::Bottom => { first_start = Vector3{x: 0, y: 0, z: 0}; second_start = Vector3{x: 0, y: 0, z: first.borrow().size - 1}; step_one = Vector3{x: 1, y: 0, z: 0}; step_two = Vector3{x: 0, y: 1, z: 0}; }, vertex::Facing::Left => { first_start = Vector3{x: 0, y: 0, z: 0}; second_start = Vector3{x: first.borrow().size - 1, y: 0, z: 0}; step_one = Vector3{x: 0, y: 1, z: 0}; step_two = Vector3{x: 0, y: 0, z: 1}; }, vertex::Facing::Right => { first_start = Vector3{x: first.borrow().size - 1, y: 0, z: 0}; second_start = Vector3{x: 0, y: 0, z: 0}; step_one = Vector3{x: 0, y: 1, z: 0}; step_two = Vector3{x: 0, y: 0, z: 1}; } } let mut done_volumes = vec![]; for u in 0..first.borrow().size { for v in 0..first.borrow().size { let first_pos = first_start + v * step_two + u * step_one; let second_pos = second_start + v * step_two + u * step_one; let volume_option = first_neighbors.get_element(first_pos.x, first_pos.y, first_pos.z); if let Some(volume) = volume_option { if !done_volumes.contains(&volume) { let mask = Vector3 {x: 1, y: 1, z: 1} - (step_one + step_two); let negated_mask = (step_one + step_two); let volume_start_first = negated_mask.mul_element_wise(volume.borrow().grid_position) + first_pos.mul_element_wise(mask); let volume_start_second = negated_mask.mul_element_wise(volume.borrow().grid_position) + second_pos.mul_element_wise(mask); let size_u; let size_v; if negated_mask.x == 1 { size_u = volume.borrow().size_x; if negated_mask.y == 1 { size_v = volume.borrow().size_y; } else { size_v = volume.borrow().size_z; } } else { size_u = volume.borrow().size_y; size_v = volume.borrow().size_z; } let mut new_colors = vec![]; let mut new_roughness = vec![]; let mut new_neighbors = vec![]; let mut color_elements = 0; let mut neighbor_elements = 0; let mut all_same = true; for volume_u in 0..size_u { for volume_v in 0..size_v { let pos = second_pos + volume_u * step_one + volume_v * step_two; let new_neighbor = second_neighbors.get_element(pos.x, pos.y, pos.z); let new_cube = second.borrow().get_element(pos.x, pos.y, pos.z); if let Some(c) = new_cube { let u8_color = Vector3 {x: (c.color * 255.0).x.min(255.0).max(0.0) as u8, y: (c.color * 255.0).y.min(255.0).max(0.0) as u8, z: (c.color * 255.0).z.min(255.0).max(0.0) as u8}; new_colors.push(u8_color); new_roughness.push(c.roughness); color_elements += 1; } else { new_colors.push(Vector3 { x: 0, y: 0, z: 0 }); new_roughness.push(0); } if let Some(n) = new_neighbor { neighbor_elements += 1; new_neighbors.push(Some(n.clone())); all_same = all_same && (new_neighbors[0] == Some(n)); } else { new_neighbors.push(None); all_same = all_same && (new_neighbors[0] == None); } } } if color_elements > 0 { new_colors = new_colors; new_roughness = new_roughness; } else { new_colors= vec![]; new_roughness = vec![]; } if neighbor_elements > 0 { if all_same { new_neighbors = vec![new_neighbors[0].clone()]; } else { new_neighbors = new_neighbors; } } else { new_neighbors = vec![None]; } match facing { vertex::Facing::Back => { volume.borrow_mut().color_back = new_colors; volume.borrow_mut().roughness_back = new_roughness; volume.borrow_mut().neighbor_back = new_neighbors; }, vertex::Facing::Front => { volume.borrow_mut().color_front = new_colors; volume.borrow_mut().roughness_front = new_roughness; volume.borrow_mut().neighbor_front = new_neighbors; }, vertex::Facing::Top => { volume.borrow_mut().color_top = new_colors; volume.borrow_mut().roughness_top = new_roughness; volume.borrow_mut().neighbor_top = new_neighbors; }, vertex::Facing::Bottom => { volume.borrow_mut().color_bottom = new_colors; volume.borrow_mut().roughness_bottom = new_roughness; volume.borrow_mut().neighbor_bottom = new_neighbors; }, vertex::Facing::Left => { volume.borrow_mut().color_left = new_colors; volume.borrow_mut().roughness_left = new_roughness; volume.borrow_mut().neighbor_left = new_neighbors; }, vertex::Facing::Right => { volume.borrow_mut().color_right = new_colors; volume.borrow_mut().roughness_right = new_roughness; volume.borrow_mut().neighbor_right = new_neighbors; }, } done_volumes.push(volume); } } } } } } impl Memorizable for EmptyVolume { // MARK: Get Buffer Mem Size fn get_buffer_mem_size(&self, data: &AppData) -> u32 { let mut mem_size: u32 = 0; mem_size += 3; //pos mem_size += 3; //max sizes mem_size += data.num_lights_per_volume; // light references mem_size += 12; //color/roughness buffer sizes, 2 values each mem_size += 12; //neighbor buffer sizes, 2 values each mem_size += 1; //scale of the volume, 1 float // this covers full color and roughness mem_size += (self.color_top.len() as u32).max(1); mem_size += (self.color_bottom.len() as u32).max(1); mem_size += (self.color_left.len() as u32).max(1); mem_size += (self.color_right.len() as u32).max(1); mem_size += (self.color_front.len() as u32).max(1); mem_size += (self.color_back.len() as u32).max(1); mem_size += (self.neighbor_top.len() as u32).max(1); mem_size += (self.neighbor_bottom.len() as u32).max(1); mem_size += (self.neighbor_left.len() as u32).max(1); mem_size += (self.neighbor_right.len() as u32).max(1); mem_size += (self.neighbor_front.len() as u32).max(1); mem_size += (self.neighbor_back.len() as u32).max(1); mem_size } // MARK: insert into Memory fn insert_into_memory(&mut self, mut v: Vec<u32>, data: &AppData, scene: &Scene) -> Vec<u32> { let mut mem_index = self.memory_start; //pos v[mem_index] = u32::from_ne_bytes(self.real_position.x.to_ne_bytes()); mem_index += 1; v[mem_index] = u32::from_ne_bytes(self.real_position.y.to_ne_bytes()); mem_index += 1; v[mem_index] = u32::from_ne_bytes(self.real_position.z.to_ne_bytes()); mem_index += 1; //max sizes v[mem_index] = self.size_x as u32; mem_index += 1; v[mem_index] = self.size_y as u32; mem_index += 1; v[mem_index] = self.size_z as u32; mem_index += 1; //Todo: insert lights let selected_lights = self.select_lights(scene.get_light_iter(), data.num_lights_per_volume, data.min_light_weight); for light in selected_lights { v[mem_index] = light; mem_index += 1; } //color/roughness buffer sizes, 2 values each if self.color_top.len() > 1 { v[mem_index] = self.size_x as u32; v[mem_index + 1] = self.size_y as u32; } else { v[mem_index] = 1; v[mem_index + 1] = 1; } mem_index += 2; if self.color_bottom.len() > 1 { v[mem_index] = self.size_x as u32; v[mem_index + 1] = self.size_y as u32; } else { v[mem_index] = 1; v[mem_index + 1] = 1; } mem_index += 2; if self.color_left.len() > 1 { v[mem_index] = self.size_y as u32; v[mem_index + 1] = self.size_z as u32; } else { v[mem_index] = 1; v[mem_index + 1] = 1; } mem_index += 2; if self.color_right.len() > 1 { v[mem_index] = self.size_y as u32; v[mem_index + 1] = self.size_z as u32; } else { v[mem_index] = 1; v[mem_index + 1] = 1; } mem_index += 2; if self.color_front.len() > 1 { v[mem_index] = self.size_x as u32; v[mem_index + 1] = self.size_z as u32; } else { v[mem_index] = 1; v[mem_index + 1] = 1; } mem_index += 2; if self.color_back.len() > 1 { v[mem_index] = self.size_x as u32; v[mem_index + 1] = self.size_z as u32; } else { v[mem_index] = 1; v[mem_index + 1] = 1; } mem_index += 2; //neighbor buffer sizes, 2 values each if self.neighbor_top.len() > 1 { v[mem_index] = self.size_x as u32; v[mem_index + 1] = self.size_y as u32; } else { v[mem_index] = 1; v[mem_index + 1] = 1; } mem_index += 2; if self.neighbor_bottom.len() > 1 { v[mem_index] = self.size_x as u32; v[mem_index + 1] = self.size_y as u32; } else { v[mem_index] = 1; v[mem_index + 1] = 1; } mem_index += 2; if self.neighbor_left.len() > 1 { v[mem_index] = self.size_y as u32; v[mem_index + 1] = self.size_z as u32; } else { v[mem_index] = 1; v[mem_index + 1] = 1; } mem_index += 2; if self.neighbor_right.len() > 1 { v[mem_index] = self.size_y as u32; v[mem_index + 1] = self.size_z as u32; } else { v[mem_index] = 1; v[mem_index + 1] = 1; } mem_index += 2; if self.neighbor_front.len() > 1 { v[mem_index] = self.size_x as u32; v[mem_index + 1] = self.size_z as u32; } else { v[mem_index] = 1; v[mem_index + 1] = 1; } mem_index += 2; if self.neighbor_back.len() > 1 { v[mem_index] = self.size_x as u32; v[mem_index + 1] = self.size_z as u32; } else { v[mem_index] = 1; v[mem_index + 1] = 1; } mem_index += 2; // scale factor v[mem_index] = u32::from_ne_bytes(self.scale.to_ne_bytes()); mem_index += 1; //color and roughness //check which endian should be used in conjunction of the graphics card (might already be handled by vulkan) if self.color_top.len() > 0 { for index in 0..self.color_top.len() { let value = &self.color_top[index]; let roughness = self.roughness_top[index]; let test : u32 = 5; v[mem_index] = u32::from_ne_bytes([value.x, value.y, value.z, roughness]); mem_index += 1; } } else { v[mem_index] = u32::from_ne_bytes([0, 0, 0, 0]); mem_index += 1; } if self.color_bottom.len() > 0 { for index in 0..self.color_bottom.len() { let value = &self.color_bottom[index]; let roughness = self.roughness_bottom[index]; let test : u32 = 5; v[mem_index] = u32::from_ne_bytes([value.x, value.y, value.z, roughness]); mem_index += 1; } } else { v[mem_index] = u32::from_ne_bytes([0, 0, 0, 0]); mem_index += 1; } if self.color_left.len() > 0 { for index in 0..self.color_left.len() { let value = &self.color_left[index]; let roughness = self.roughness_left[index]; let test : u32 = 5; v[mem_index] = u32::from_ne_bytes([value.x, value.y, value.z, roughness]); mem_index += 1; } } else { v[mem_index] = u32::from_ne_bytes([0, 0, 0, 0]); mem_index += 1; } if self.color_right.len() > 0 { for index in 0..self.color_right.len() { let value = &self.color_right[index]; let roughness = self.roughness_right[index]; let test : u32 = 5; v[mem_index] = u32::from_ne_bytes([value.x, value.y, value.z, roughness]); mem_index += 1; } } else { v[mem_index] = u32::from_ne_bytes([0, 0, 0, 0]); mem_index += 1; } if self.color_front.len() > 0 { for index in 0..self.color_front.len() { let value = &self.color_front[index]; let roughness = self.roughness_front[index]; let test : u32 = 5; v[mem_index] = u32::from_ne_bytes([value.x, value.y, value.z, roughness]); mem_index += 1; } } else { v[mem_index] = u32::from_ne_bytes([0, 0, 0, 0]); mem_index += 1; } if self.color_back.len() > 0 { for index in 0..self.color_back.len() { let value = &self.color_back[index]; let roughness = self.roughness_back[index]; let test : u32 = 5; v[mem_index] = u32::from_ne_bytes([value.x, value.y, value.z, roughness]); mem_index += 1; } } else { v[mem_index] = u32::from_ne_bytes([0, 0, 0, 0]); mem_index += 1; } // neighbors if self.neighbor_top.len() > 0 { for nvalue in &self.neighbor_top { if let Some(reference) = nvalue { v[mem_index] = reference.borrow().memory_start as u32; } else { v[mem_index] = 0; } mem_index += 1; } } else { v[mem_index] = 0; mem_index += 1; } if self.neighbor_bottom.len() > 0 { for nvalue in &self.neighbor_bottom { if let Some(reference) = nvalue { v[mem_index] = reference.borrow().memory_start as u32; } else { v[mem_index] = 0; } mem_index += 1; } } else { v[mem_index] = 0; mem_index += 1; } if self.neighbor_left.len() > 0 { for nvalue in &self.neighbor_left { if let Some(reference) = nvalue { v[mem_index] = reference.borrow().memory_start as u32; } else { v[mem_index] = 0; } mem_index += 1; } } else { v[mem_index] = 0; mem_index += 1; } if self.neighbor_right.len() > 0 { for nvalue in &self.neighbor_right { if let Some(reference) = nvalue { v[mem_index] = reference.borrow().memory_start as u32; } else { v[mem_index] = 0; } mem_index += 1; } } else { v[mem_index] = 0; mem_index += 1; } if self.neighbor_front.len() > 0 { for nvalue in &self.neighbor_front { if let Some(reference) = nvalue { v[mem_index] = reference.borrow().memory_start as u32; } else { v[mem_index] = 0; } mem_index += 1; } } else { v[mem_index] = 0; mem_index += 1; } if self.neighbor_back.len() > 0 { for nvalue in &self.neighbor_back { if let Some(reference) = nvalue { v[mem_index] = reference.borrow().memory_start as u32; } else { v[mem_index] = 0; } mem_index += 1; } } else { v[mem_index] = 0; mem_index += 1; } self.dirty = false; self.old_memory_size = self.get_buffer_mem_size(data); //println!("last memory index of volume was {}, equivalent to {}kB", mem_index, mem_index * 32 / 8 / 1024); v } fn get_memory_start(&self) -> usize { self.memory_start } fn set_memory_start(&mut self, memory_start: usize) { self.memory_start = memory_start; } fn get_prev_buffer_mem_size(&self) -> u32 { self.old_memory_size } fn is_dirty(&self) -> bool { self.dirty } } impl PartialEq for EmptyVolume { fn eq(&self, other: &Self) -> bool { self.grid_position == other.grid_position && self.size_x == other.size_x && self.size_y == other.size_y && self.size_z == other.size_z } }