mod oct_tree; mod empty_volume; mod light; mod memorizable; pub mod generators; use anyhow::Ok; use light::{DirectionalLight, LightSource, PointLight}; use vulkanalia::prelude::v1_0::*; use anyhow::Result; use cgmath::{vec2, vec3, Vector3}; use std::cell::RefCell; use std::rc::Rc; use crate::scene::memorizable::Memorizable; use crate::app_data::AppData; use crate::buffer; use crate::primitives::rec_cuboid::Cuboid; use crate::vertex; use crate::primitives::cube::Cube; use crate::primitives::drawable::Drawable; use crate::scene::oct_tree::{OctTree, OctTreeIter, CHUNK_SIZE}; use crate::scene::empty_volume::EmptyVolume; extern crate rand; use rand::Rng; #[repr(C)] #[derive(Clone, Debug, Default)] pub struct Scene { pub vertices: Vec<vertex::Vertex>, pub sized_vertices: Vec<vertex::SizedVertex>, pub rt_vertices: Vec<vertex::RTVertex>, pub indices_cube: Vec<u32>, pub indices_cuboid: Vec<u32>, pub indices_rt: Vec<u32>, pub vertex_buffer_cube: vk::Buffer, pub vertex_buffer_memory_cube: vk::DeviceMemory, pub index_buffer_cube: vk::Buffer, pub index_buffer_memory_cube: vk::DeviceMemory, pub vertex_buffer_cuboid: vk::Buffer, pub vertex_buffer_memory_cuboid: vk::DeviceMemory, pub index_buffer_cuboid: vk::Buffer, pub index_buffer_memory_cuboid: vk::DeviceMemory, pub vertex_buffer_quad: vk::Buffer, pub vertex_buffer_memory_quad: vk::DeviceMemory, pub index_buffer_quad: vk::Buffer, pub index_buffer_memory_quad: vk::DeviceMemory, pub rt_memory: Vec<u32>, pub oct_trees: Vec<Vec<Vec<Rc<RefCell<OctTree<Cube>>>>>>, pub point_lights: Vec<Rc<RefCell<PointLight>>>, pub directional_lights: Vec<Rc<RefCell<DirectionalLight>>>, pub memorizables: Vec<Rc<RefCell<dyn Memorizable>>>, } impl Scene { pub unsafe fn prepare_data(&mut self, instance: &vulkanalia::Instance, device: &vulkanalia::Device, data: &mut AppData) -> Result<()> { // todo store the chunks somewhere (or only use them as intermediary for neighbourhood calculation idc) let mut empty_volumes: Vec<Rc<RefCell<EmptyVolume>>> = vec![]; let mut neighbor_trees: Vec<Vec<Vec<Rc<OctTree<Rc<RefCell<EmptyVolume>>>>>>> = vec![]; let mut z_index = 0; for oct_tree_plane_xy in &self.oct_trees { neighbor_trees.push(vec![]); let mut y_index = 0; for oct_tree_line_y in oct_tree_plane_xy { neighbor_trees[z_index].push(vec![]); let mut x_index = 0; for oct_tree in oct_tree_line_y { let mut new_volumes: Vec<Rc<RefCell<EmptyVolume>>>; let new_neighbors; (new_volumes, new_neighbors) = EmptyVolume::from_oct_tree(oct_tree, Vector3 { x: (x_index * CHUNK_SIZE) as f32 * oct_tree.borrow().scale, y: (y_index * CHUNK_SIZE) as f32 * oct_tree.borrow().scale, z: (z_index * CHUNK_SIZE) as f32 * oct_tree.borrow().scale }); empty_volumes.append(&mut new_volumes); neighbor_trees[z_index][y_index].push(Rc::new(new_neighbors)); x_index += 1; } y_index += 1; } z_index += 1; } let mut z_index = 0; for oct_tree_plane_xy in &self.oct_trees { let mut y_index = 0; for oct_tree_line_x in oct_tree_plane_xy { let mut x_index = 0; for oct_tree in oct_tree_line_x { if oct_tree_line_x.len() > x_index + 1 { EmptyVolume::combine_results(oct_tree, &neighbor_trees[z_index][y_index][x_index], &oct_tree_line_x[x_index + 1], &neighbor_trees[z_index][y_index][x_index + 1], vertex::Facing::Right); EmptyVolume::combine_results(&oct_tree_line_x[x_index + 1], &neighbor_trees[z_index][y_index][x_index + 1], oct_tree, &neighbor_trees[z_index][y_index][x_index], vertex::Facing::Left); } if oct_tree_plane_xy.len() > y_index + 1 { EmptyVolume::combine_results(oct_tree, &neighbor_trees[z_index][y_index][x_index], &oct_tree_plane_xy[y_index + 1][x_index], &neighbor_trees[z_index][y_index + 1][x_index], vertex::Facing::Back); EmptyVolume::combine_results(&oct_tree_plane_xy[y_index + 1][x_index], &neighbor_trees[z_index][y_index + 1][x_index], oct_tree, &neighbor_trees[z_index][y_index][x_index], vertex::Facing::Front); } if self.oct_trees.len() > z_index + 1 { EmptyVolume::combine_results(oct_tree, &neighbor_trees[z_index][y_index][x_index], &self.oct_trees[z_index + 1][y_index][x_index], &neighbor_trees[z_index + 1][y_index][x_index], vertex::Facing::Top); EmptyVolume::combine_results(&self.oct_trees[z_index + 1][y_index][x_index], &neighbor_trees[z_index + 1][y_index][x_index], oct_tree, &neighbor_trees[z_index][y_index][x_index], vertex::Facing::Bottom); } x_index += 1; } y_index += 1; } z_index += 1; } println!("number of empty volumes is {}", empty_volumes.len()); for light in &self.point_lights { self.memorizables.push(light.clone()); } for light in &self.directional_lights { self.memorizables.push(light.clone()); } for volume in &empty_volumes { self.memorizables.push(volume.clone()); } self.update_memory(data, false); for volume in &empty_volumes { let quads = volume.borrow().to_quads(); for quad in quads { quad.draw(&data.topology, self.rt_vertices.len(), self); } } if self.vertices.len() != 0 { (self.vertex_buffer_cube, self.vertex_buffer_memory_cube) = buffer::create_vertex_buffer(instance, device, &data, &self.vertices)?; (self.index_buffer_cube, self.index_buffer_memory_cube) = buffer::create_index_buffer(&instance, &device, &data, &self.indices_cube)?; } if self.sized_vertices.len() != 0 { (self.vertex_buffer_cuboid, self.vertex_buffer_memory_cuboid) = buffer::create_vertex_buffer(instance, device, &data, &self.sized_vertices)?; (self.index_buffer_cuboid, self.index_buffer_memory_cuboid) = buffer::create_index_buffer(&instance, &device, &data, &self.indices_cuboid)?; } if self.rt_vertices.len() != 0 { println!("number of quad vertices is {}", self.rt_vertices.len()); (self.vertex_buffer_quad, self.vertex_buffer_memory_quad) = buffer::create_vertex_buffer(instance, device, &data, &self.rt_vertices)?; (self.index_buffer_quad, self.index_buffer_memory_quad) = buffer::create_index_buffer(&instance, &device, &data, &self.indices_rt)?; } Ok(()) } pub fn is_dirty(&self) -> bool { for memorizable in &self.memorizables { if memorizable.borrow().is_dirty() { return true } } return false } pub fn update_memory(&mut self, data: &mut AppData, reuse_memory: bool) { // reuse_memory controls whether a fresh data vector is created or the existing one is used if it is the right size let mut memory_index = 6; // 0 - location for the maximum number of lights referenced per chunk (also will be the invalid memory allocation for pointing to a nonexistant neighbor) // 1 - location for the max iterations per light // 2 - diffuse raster samples (2*n + 1) * (2*n + 1) so as to always have at least the central fragment covered // 3 - diffuse raster size // 4 - max recursive rays // 5 - diffuse rays per hit for memorizable in &self.memorizables { memorizable.borrow_mut().set_memory_start(memory_index); memory_index += memorizable.borrow_mut().get_buffer_mem_size(data) as usize; } //println!("Memory size is {} kB, max indes is {}", memory_index * 32 / 8 /1024 + 1, memory_index); let mut volume_vec; let needs_overwrite; if !reuse_memory || memory_index != self.rt_memory.len() { volume_vec = vec![data.num_lights_per_volume; memory_index]; needs_overwrite = true; } else { needs_overwrite = false; volume_vec = self.rt_memory.clone(); } volume_vec[1] = data.max_iterations_per_light; volume_vec[2] = data.diffuse_raster_steps; volume_vec[3] = u32::from_ne_bytes(data.diffuse_raster_size.to_ne_bytes()); volume_vec[4] = data.max_recursive_rays; volume_vec[5] = data.diffuse_rays_per_hit; for memorizable in &self.memorizables { if needs_overwrite || memorizable.borrow().is_dirty() { volume_vec = memorizable.borrow_mut().insert_into_memory(volume_vec, data, &self); } } self.rt_memory = volume_vec; data.scene_rt_memory_size = (self.rt_memory.len() * 4) as u64; // size of the needed buffer size in bytes } pub unsafe fn destroy(&mut self, device: &vulkanalia::Device) { device.destroy_buffer(self.index_buffer_cube, None); device.free_memory(self.index_buffer_memory_cube, None); device.destroy_buffer(self.vertex_buffer_cube, None); device.free_memory(self.vertex_buffer_memory_cube, None); device.destroy_buffer(self.index_buffer_cuboid, None); device.free_memory(self.index_buffer_memory_cuboid, None); device.destroy_buffer(self.vertex_buffer_cuboid, None); device.free_memory(self.vertex_buffer_memory_cuboid, None); device.destroy_buffer(self.index_buffer_quad, None); device.free_memory(self.index_buffer_memory_quad, None); device.destroy_buffer(self.vertex_buffer_quad, None); device.free_memory(self.vertex_buffer_memory_quad, None); } fn get_light_iter(&self) -> LightsIter { LightsIter::new(self) } } pub struct LightsIter<'a> { light_index: usize, scene: &'a Scene, } impl<'a> LightsIter<'a> { fn new(scene: &'a Scene) -> Self { LightsIter {light_index: 0, scene: scene} } } impl<'a> Iterator for LightsIter<'a> { type Item = Rc<RefCell<dyn LightSource>>; fn next(&mut self) -> Option<Self::Item> { if self.light_index >= self.scene.point_lights.len() { if self.light_index - self.scene.point_lights.len() >= self.scene.directional_lights.len() { None } else { let result = self.scene.directional_lights[self.light_index - self.scene.point_lights.len()].clone(); self.light_index += 1; Some(result) } } else { let result = self.scene.point_lights[self.light_index].clone(); self.light_index += 1; Some(result) } } }