use cgmath::Vector3; use std::cell::RefCell; use std::rc::Rc; use std::time::Instant; use crate::vertex; use crate::primitives::cube::Cube; use crate::primitives::quad::Quad; use crate::scene::oct_tree::OctTree; use super::light::PointLight; pub struct EmptyVolume { pub memory_start: usize, pub size_x: usize, pub size_y: usize, pub size_z: usize, pub position: Vector3<usize>, pub color_left: Vec<Vector3<u8>>, pub color_right: Vec<Vector3<u8>>, pub color_top: Vec<Vector3<u8>>, pub color_bottom: Vec<Vector3<u8>>, pub color_back: Vec<Vector3<u8>>, pub color_front: Vec<Vector3<u8>>, pub roughness_left: Vec<u8>, pub roughness_right: Vec<u8>, pub roughness_top: Vec<u8>, pub roughness_bottom: Vec<u8>, pub roughness_back: Vec<u8>, pub roughness_front: Vec<u8>, pub neighbor_left: Vec<Option<Rc<RefCell<Self>>>>, pub neighbor_right: Vec<Option<Rc<RefCell<Self>>>>, pub neighbor_top: Vec<Option<Rc<RefCell<Self>>>>, pub neighbor_bottom: Vec<Option<Rc<RefCell<Self>>>>, pub neighbor_back: Vec<Option<Rc<RefCell<Self>>>>, pub neighbor_front: Vec<Option<Rc<RefCell<Self>>>>, } impl EmptyVolume { pub fn contains(&self, pos: &Vector3<usize>) -> bool { self.position[0] + self.size_x > pos[0] && pos[0] >= self.position[0] && self.position[1] + self.size_y > pos[1] && pos[1] >= self.position[1] && self.position[2] + self.size_z > pos[2] && pos[2] >= self.position[2] } fn check_transparent(cube_result: Option<Cube>, transparent_color: &Vector3<f32>, transparent_roughness: &u8) -> bool { if let Some(c) = cube_result { return c.transparent && &c.color == transparent_color && &c.roughness == transparent_roughness } false } // MARK: From Oct Tree pub fn from_oct_tree(tree: &OctTree<Cube>) -> (Vec<Rc<RefCell<EmptyVolume>>>, OctTree<Rc<RefCell<EmptyVolume>>>) { // todo: ppotentially use a child exist check while going through the oct tree to find some obvios starting empty volumes. Will still need to check for possible expansions though let mut volumes: Vec<Rc<RefCell<EmptyVolume>>> = vec![]; let mut neighbors: OctTree<Rc<RefCell<EmptyVolume>>> = OctTree::create(tree.size).unwrap(); let start_time = Instant::now(); // iterate over all block positions in the oct tree let mut check_its = 0; let mut x_index = 0; while x_index < tree.size { let mut y_index = 0; while y_index < tree.size { let mut z_index = 0; while z_index < tree.size { // check if there is a block at that position let query_result = tree.test_element(x_index, y_index, z_index); let mut transparent = false; let mut transparent_color = Vector3 {x: 0.0, y: 0.0, z: 0.0}; let mut tranparent_roughness = 0; if let Some(c) = query_result.3 { transparent = c.transparent; transparent_color = c.color; tranparent_roughness = c.roughness; } if !query_result.0 || transparent { //if not check that it is not already inside of a volume let mut contained = false; for volume in &volumes { if volume.borrow().contains(&Vector3{x: x_index, y: y_index, z: z_index}) { contained = true; z_index = volume.borrow().size_z + volume.borrow().position.z; break; } } if contained { // abort if it is already covered continue; } println!("new starting pos: {}, {}, {}", x_index, y_index, z_index); println!("start growing volume x"); // MARK: Start new Volume let mut x_size = 0; let mut y_size = 0; let mut z_size = 0; if query_result.1 > 1 { x_size = query_result.1 - 1 - (x_index - query_result.2.0); y_size = query_result.1 - 1 - (y_index - query_result.2.1); z_size = query_result.1 - 1 - (z_index - query_result.2.2); println!("enhanced starting size: {}, {}, {}", x_size+1, y_size+1, z_size+1); } let mut grow = true; while grow { grow &= (x_index + x_size + 1) < tree.size; if grow { let mut z = 0; let mut y = 0; while z < z_size.max(1) && y < y_size.max(1) { let query_result = tree.test_element(x_index + x_size + 1, y_index + y, z_index + z); check_its += 1; grow &= ((!query_result.0 && !transparent) || (transparent && EmptyVolume::check_transparent(query_result.3, &transparent_color, &tranparent_roughness))) && neighbors.get_element(x_index + x_size + 1, y_index + y, z_index + z).is_none(); if query_result.1 > 1 { let start_x = query_result.2.0; let start_y = query_result.2.1; let start_z = query_result.2.2; let end_x = query_result.2.0 + query_result.1; let end_y = query_result.2.1 + query_result.1; let end_z = query_result.2.2 + query_result.1; if start_z <= z && z_index + z_size <= end_z { // we can skip iterating z z = end_z; if start_y <= y && y_index + y_size <= end_y { // we can skip iterating y y = end_y; } } } if !grow { break; } z += 1; if z >= z_size { z = 0; y += 1; } } } if grow { x_size += 1; } } println!("start growing volume y"); grow = true; while grow { grow &= (y_index + y_size + 1) < tree.size; if grow { let mut z = 0; let mut x = 0; while z < z_size.max(1) && x < x_size.max(1) { let query_result = tree.test_element(x_index + x, y_index + y_size + 1, z_index + z); check_its += 1; grow &= ((!query_result.0 && !transparent) || (transparent && EmptyVolume::check_transparent(query_result.3, &transparent_color, &tranparent_roughness))) && neighbors.get_element(x_index + x, y_index + y_size + 1, z_index + z).is_none(); if query_result.1 > 1 { let start_x = query_result.2.0; let start_y = query_result.2.1; let start_z = query_result.2.2; let end_x = query_result.2.0 + query_result.1; let end_y = query_result.2.1 + query_result.1; let end_z = query_result.2.2 + query_result.1; if start_z <= z && z_index + z_size <= end_z { // we can skip iterating z z = end_z; if start_x <= x && x_index + x_size <= end_x { // we can skip iterating x x = end_x; } } } if !grow { break; } z += 1; if z >= z_size { z = 0; x += 1; } } } if grow { y_size += 1; } } println!("start growing volume z"); grow = true; while grow { grow &= (z_index + z_size + 1) < tree.size; if grow { let mut y = 0; let mut x = 0; while y < y_size.max(1) && x < x_size.max(1) { let query_result = tree.test_element(x_index + x, y_index + y, z_index + z_size + 1); check_its += 1; grow &= ((!query_result.0 && !transparent) || (transparent && EmptyVolume::check_transparent(query_result.3, &transparent_color, &tranparent_roughness))) && neighbors.get_element(x_index + x, y_index + y, z_index + z_size + 1).is_none(); if query_result.1 > 1 { let start_x = query_result.2.0; let start_y = query_result.2.1; let start_z = query_result.2.2; let end_x = query_result.2.0 + query_result.1; let end_y = query_result.2.1 + query_result.1; let end_z = query_result.2.2 + query_result.1; if start_x <= x && x_index + x_size <= end_x { // we can skip iterating x x = end_x; if start_y <= y && y_index + y_size <= end_y { // we can skip iterating y y = end_y; } } } if !grow { break; } x += 1; if x >= x_size { x = 0; y += 1; } } } if grow { z_size += 1; } } println!("final size: {}, {}, {}", x_size+1, y_size+1, z_size+1); // create new empty volume let new_volume = EmptyVolume { memory_start: 0, size_x: x_size + 1, size_y: y_size + 1, size_z: z_size + 1, position: Vector3{x: x_index, y: y_index, z: z_index}, color_left: vec![], color_right: vec![], color_top: vec![], color_bottom: vec![], color_back: vec![], color_front: vec![], roughness_left: vec![], roughness_right: vec![], roughness_top: vec![], roughness_bottom: vec![], roughness_back: vec![], roughness_front: vec![], neighbor_left: vec![], neighbor_right: vec![], neighbor_top: vec![], neighbor_bottom: vec![], neighbor_back: vec![], neighbor_front: vec![], }; println!("adding neighbor references"); // MARK: fill in info in the neighbor octtree let reference = Rc::new(RefCell::new(new_volume)); for x in 0..x_size+1 { for y in 0..y_size+1 { for z in 0..z_size+1 { //neighbors.set_element(reference.clone(), reference.borrow().position.x + x, reference.borrow().position.y + y, reference.borrow().position.z + z); // fill only the edges if x == 0 || x == x_size || y == 0 || y == y_size || z==0 || z == z_size { neighbors.set_element(reference.clone(), reference.borrow().position.x + x, reference.borrow().position.y + y, reference.borrow().position.z + z) } } } } println!("add the border information for color and roughness"); let x_min_pos; if reference.borrow().position.x == 0 { // will result in an empty color and roughness map. x_min_pos = 0; } else { x_min_pos = reference.borrow().position.x -1; } let y_min_pos; if reference.borrow().position.y == 0 { // will result in an empty color and roughness map. y_min_pos = 0; } else { y_min_pos = reference.borrow().position.y -1; } let z_min_pos; if reference.borrow().position.z == 0 { // will result in an empty color and roughness map. z_min_pos = 0; } else { z_min_pos = reference.borrow().position.z -1; } let x_max_pos = reference.borrow().position.x + reference.borrow().size_x; let y_max_pos = reference.borrow().position.y + reference.borrow().size_y; let z_max_pos = reference.borrow().position.z + reference.borrow().size_z; // MARK: bottom face of the volume let mut bottom_colors = vec![]; let mut bottom_roughness = vec![]; let mut bottom_elements_num = 0; for x in 0..x_size+1 { for y in 0..y_size+1 { if let Some(c) = tree.get_element(reference.borrow().position.x + x, reference.borrow().position.y + y, z_min_pos) { bottom_elements_num += 1; let u8_color = Vector3 {x: (c.color * 255.0).x.min(255.0).max(0.0) as u8, y: (c.color * 255.0).y.min(255.0).max(0.0) as u8, z: (c.color * 255.0).z.min(255.0).max(0.0) as u8}; bottom_colors.push(u8_color); bottom_roughness.push(c.roughness); } else { bottom_colors.push(Vector3 { x: 0, y: 0, z: 0 }); bottom_roughness.push(0); } } } if bottom_elements_num > 0 { reference.borrow_mut().color_bottom = bottom_colors; reference.borrow_mut().roughness_bottom = bottom_roughness; } else { reference.borrow_mut().color_bottom= vec![]; reference.borrow_mut().roughness_bottom= vec![]; } // MARK: top face of the volume let mut top_colors = vec![]; let mut top_roughness = vec![]; let mut top_elements_num = 0; for x in 0..x_size+1 { for y in 0..y_size+1 { if let Some(c) = tree.get_element(reference.borrow().position.x + x, reference.borrow().position.y + y, z_max_pos) { top_elements_num += 1; let u8_color = Vector3 {x: (c.color * 255.0).x.min(255.0).max(0.0) as u8, y: (c.color * 255.0).y.min(255.0).max(0.0) as u8, z: (c.color * 255.0).z.min(255.0).max(0.0) as u8}; top_colors.push(u8_color); top_roughness.push(c.roughness); } else { top_colors.push(Vector3 { x: 0, y: 0, z: 0 }); top_roughness.push(0); } } } if top_elements_num > 0 { reference.borrow_mut().color_top = top_colors; reference.borrow_mut().roughness_top = top_roughness; } else { reference.borrow_mut().color_top= vec![]; reference.borrow_mut().roughness_top= vec![]; } // MARK: back face of the volume let mut back_colors = vec![]; let mut back_roughness = vec![]; let mut back_elements_num = 0; for x in 0..x_size+1 { for z in 0..z_size+1 { if let Some(c) = tree.get_element(reference.borrow().position.x + x, y_max_pos, reference.borrow().position.z + z) { back_elements_num += 1; let u8_color = Vector3 {x: (c.color * 255.0).x.min(255.0).max(0.0) as u8, y: (c.color * 255.0).y.min(255.0).max(0.0) as u8, z: (c.color * 255.0).z.min(255.0).max(0.0) as u8}; back_colors.push(u8_color); back_roughness.push(c.roughness); } else { back_colors.push(Vector3 { x: 0, y: 0, z: 0 }); back_roughness.push(0); } } } if back_elements_num > 0 { reference.borrow_mut().color_back = back_colors; reference.borrow_mut().roughness_back = back_roughness; } else { reference.borrow_mut().color_back= vec![]; reference.borrow_mut().roughness_back= vec![]; } // MARK: front face of the volume let mut front_colors = vec![]; let mut front_roughness = vec![]; let mut front_elements_num = 0; for x in 0..x_size+1 { for z in 0..z_size+1 { if let Some(c) = tree.get_element(reference.borrow().position.x + x, y_min_pos, reference.borrow().position.z + z) { front_elements_num += 1; let u8_color = Vector3 {x: (c.color * 255.0).x.min(255.0).max(0.0) as u8, y: (c.color * 255.0).y.min(255.0).max(0.0) as u8, z: (c.color * 255.0).z.min(255.0).max(0.0) as u8}; front_colors.push(u8_color); front_roughness.push(c.roughness); } else { front_colors.push(Vector3 { x: 0, y: 0, z: 0 }); front_roughness.push(0); } } } if front_elements_num > 0 { reference.borrow_mut().color_front = front_colors; reference.borrow_mut().roughness_front = front_roughness; } else { reference.borrow_mut().color_front= vec![]; reference.borrow_mut().roughness_front= vec![]; } // MARK: left face of the volume let mut left_colors = vec![]; let mut left_roughness = vec![]; let mut left_elements_num = 0; for y in 0..y_size+1 { for z in 0..z_size+1 { if let Some(c) = tree.get_element(x_min_pos, reference.borrow().position.y + y, reference.borrow().position.z + z) { left_elements_num += 1; let u8_color = Vector3 {x: (c.color * 255.0).x.min(255.0).max(0.0) as u8, y: (c.color * 255.0).y.min(255.0).max(0.0) as u8, z: (c.color * 255.0).z.min(255.0).max(0.0) as u8}; left_colors.push(u8_color); left_roughness.push(c.roughness); } else { left_colors.push(Vector3 { x: 0, y: 0, z: 0 }); left_roughness.push(0); } } } if left_elements_num > 0 { reference.borrow_mut().color_left = left_colors; reference.borrow_mut().roughness_left = left_roughness; } else { reference.borrow_mut().color_left= vec![]; reference.borrow_mut().roughness_left= vec![]; } // MARK: right face of the volume let mut right_colors = vec![]; let mut right_roughness = vec![]; let mut right_elements_num = 0; for y in 0..y_size+1 { for z in 0..z_size+1 { if let Some(c) = tree.get_element(x_max_pos, reference.borrow().position.y + y, reference.borrow().position.z + z) { right_elements_num += 1; let u8_color = Vector3 {x: (c.color * 255.0).x.min(255.0).max(0.0) as u8, y: (c.color * 255.0).y.min(255.0).max(0.0) as u8, z: (c.color * 255.0).z.min(255.0).max(0.0) as u8}; right_colors.push(u8_color); right_roughness.push(c.roughness); } else { right_colors.push(Vector3 { x: 0, y: 0, z: 0 }); right_roughness.push(0); } } } if right_elements_num > 0 { reference.borrow_mut().color_right = right_colors; reference.borrow_mut().roughness_right = right_roughness; } else { reference.borrow_mut().color_right= vec![]; reference.borrow_mut().roughness_right= vec![]; } println!("new volume done"); //push to the list volumes.push(reference); } z_index += 1 } y_index += 1; } x_index += 1; } println!("Did {} oct tree checks!", check_its); println!("add the neighbor linkage for all the volumes of the oct tree"); // MARK: Neighbor Linkage for reference in volumes.iter_mut() { let x_min_pos; if reference.borrow().position.x == 0 { // will result in an empty color and roughness map. x_min_pos = 0; } else { x_min_pos = reference.borrow().position.x -1; } let y_min_pos; if reference.borrow().position.y == 0 { // will result in an empty color and roughness map. y_min_pos = 0; } else { y_min_pos = reference.borrow().position.y -1; } let z_min_pos; if reference.borrow().position.z == 0 { // will result in an empty color and roughness map. z_min_pos = 0; } else { z_min_pos = reference.borrow().position.z -1; } let x_max_pos = reference.borrow().position.x + reference.borrow().size_x; let y_max_pos = reference.borrow().position.y + reference.borrow().size_y; let z_max_pos = reference.borrow().position.z + reference.borrow().size_z; // MARK: bottom face of the volume let mut bottom_neighbors = vec![]; let mut bottom_elements_num = 0; let mut all_same = true; if z_min_pos != 0 { for x in 0..reference.borrow().size_x { for y in 0..reference.borrow().size_y { if let Some(c) = neighbors.get_element(reference.borrow().position.x + x, reference.borrow().position.y + y, z_min_pos) { bottom_elements_num += 1; bottom_neighbors.push(Some(c.clone())); all_same = all_same && (bottom_neighbors[0] == Some(c)); } else { bottom_neighbors.push(None); } } } } if bottom_elements_num > 0 { if all_same { reference.borrow_mut().neighbor_bottom = vec![bottom_neighbors[0].clone()]; } else { reference.borrow_mut().neighbor_bottom = bottom_neighbors; } } else { reference.borrow_mut().neighbor_bottom = vec![None]; } // MARK: top face of the volume let mut top_neighbors = vec![]; let mut top_elements_num = 0; let mut all_same = true; for x in 0..reference.borrow().size_x { for y in 0..reference.borrow().size_y { if let Some(c) = neighbors.get_element(reference.borrow().position.x + x, reference.borrow().position.y + y, z_max_pos) { top_elements_num += 1; top_neighbors.push(Some(c.clone())); all_same = all_same && (top_neighbors[0] == Some(c)); } else { top_neighbors.push(None); } } } if top_elements_num > 0 { if all_same { reference.borrow_mut().neighbor_top = vec![top_neighbors[0].clone()]; } else { reference.borrow_mut().neighbor_top = top_neighbors; } } else { reference.borrow_mut().neighbor_top = vec![None]; } // MARK: back face of the volume let mut back_neighbors = vec![]; let mut back_elements_num = 0; let mut all_same = true; for x in 0..reference.borrow().size_x { for z in 0..reference.borrow().size_z { if let Some(c) = neighbors.get_element(reference.borrow().position.x + x, y_max_pos, reference.borrow().position.z + z) { back_elements_num += 1; back_neighbors.push(Some(c.clone())); all_same = all_same && (back_neighbors[0] == Some(c)); } else { back_neighbors.push(None); } } } if back_elements_num > 0 { if all_same { reference.borrow_mut().neighbor_back = vec![back_neighbors[0].clone()]; } else { reference.borrow_mut().neighbor_back = back_neighbors; } } else { reference.borrow_mut().neighbor_back = vec![None]; } // MARK: front face of the volume let mut front_neighbors = vec![]; let mut front_elements_num = 0; let mut all_same = true; if y_min_pos != 0{ for x in 0..reference.borrow().size_x { for z in 0..reference.borrow().size_z { if let Some(c) = neighbors.get_element(reference.borrow().position.x + x, y_min_pos, reference.borrow().position.z + z) { front_elements_num += 1; front_neighbors.push(Some(c.clone())); all_same = all_same && (front_neighbors[0] == Some(c)); } else { front_neighbors.push(None); } } } } if front_elements_num > 0 { if all_same { reference.borrow_mut().neighbor_front = vec![front_neighbors[0].clone()]; } else { reference.borrow_mut().neighbor_front = front_neighbors; } } else { reference.borrow_mut().neighbor_front = vec![None]; } // MARK: left face of the volume let mut left_neighbors = vec![]; let mut left_elements_num = 0; let mut all_same = true; if x_min_pos != 0 { for y in 0..reference.borrow().size_y { for z in 0..reference.borrow().size_z { if let Some(c) = neighbors.get_element(x_min_pos, reference.borrow().position.y + y, reference.borrow().position.z + z) { left_elements_num += 1; left_neighbors.push(Some(c.clone())); all_same = all_same && (left_neighbors[0] == Some(c)); } else { left_neighbors.push(None); } } } } if left_elements_num > 0 { if all_same { reference.borrow_mut().neighbor_left = vec![left_neighbors[0].clone()]; } else { reference.borrow_mut().neighbor_left = left_neighbors; } } else { reference.borrow_mut().neighbor_left = vec![None]; } // MARK: right face of the volume let mut right_neighbors = vec![]; let mut right_elements_num = 0; let mut all_same = true; for y in 0..reference.borrow().size_y { for z in 0..reference.borrow().size_z { if let Some(c) = neighbors.get_element(x_max_pos, reference.borrow().position.y + y, reference.borrow().position.z + z) { right_elements_num += 1; right_neighbors.push(Some(c.clone())); all_same = all_same && (right_neighbors[0] == Some(c)); } else { right_neighbors.push(None); } } } if right_elements_num > 0 { if all_same { reference.borrow_mut().neighbor_right = vec![right_neighbors[0].clone()]; } else { reference.borrow_mut().neighbor_right = right_neighbors; } } else { reference.borrow_mut().neighbor_right = vec![None]; } } println!("volume creation took {} s", start_time.elapsed().as_millis() as f32 / 1000.0); (volumes, neighbors) } // MARK: To Quads pub fn to_quads(&self) -> Vec<Quad> { let mut quads = vec![]; let float_pos = Vector3 {x: self.position.x as f32, y: self.position.y as f32, z: self.position.z as f32}; //bottom sides of the volumes, top side of the block for x in 0..self.size_x { for y in 0..self.size_y { let index = x * self.size_y + y; if self.color_bottom.len() <= index { continue; } if self.neighbor_bottom.len() > index { if let Some(_) = self.neighbor_bottom[index] { if self.color_bottom[index] == (Vector3 {x: 0, y: 0, z: 0}) { continue; } } } let quad = Quad { pos1: float_pos + Vector3 { x: -0.5 + x as f32, y: -0.5 + y as f32, z: -0.5 }, pos4: float_pos + Vector3 { x: 0.5 + x as f32, y: -0.5 + y as f32, z: -0.5 }, pos3: float_pos + Vector3 { x: 0.5 + x as f32, y: 0.5 + y as f32, z: -0.5 }, pos2: float_pos + Vector3 { x: -0.5 + x as f32, y: 0.5 + y as f32, z: -0.5 }, raster_pos: cgmath::Vector2 { x: x as u32, y: y as u32 }, volume_index: self.memory_start as u32, facing: vertex::Facing::Bottom }; quads.push(quad); } } //top sides of the volumes, bottom side of the block for x in 0..self.size_x { for y in 0..self.size_y { let index = x * self.size_y + y; if self.color_top.len() <= 0 { continue; } if self.neighbor_top.len() > index { if let Some(_) = self.neighbor_top[index] { if self.color_top[index] == (Vector3 {x: 0, y: 0, z: 0}) { continue; } } } let quad = Quad { pos4: float_pos + Vector3 { x: -0.5 + x as f32, y: -0.5 + y as f32, z: self.size_z as f32 - 0.5 }, pos1: float_pos + Vector3 { x: 0.5 + x as f32, y: -0.5 + y as f32, z: self.size_z as f32 - 0.5 }, pos2: float_pos + Vector3 { x: 0.5 + x as f32, y: 0.5 + y as f32, z: self.size_z as f32 - 0.5 }, pos3: float_pos + Vector3 { x: -0.5 + x as f32, y: 0.5 + y as f32, z: self.size_z as f32 - 0.5 }, raster_pos: cgmath::Vector2 { x: x as u32, y: y as u32 }, volume_index: self.memory_start as u32, facing: vertex::Facing::Top }; quads.push(quad); } } //front sides of the volumes, back side of the block for x in 0..self.size_x { for z in 0..self.size_z { let index = x * self.size_z + z; if self.color_front.len() <= 0 { continue; } if self.neighbor_front.len() > index { if let Some(_) = self.neighbor_front[index] { if self.color_front[index] == (Vector3 {x: 0, y: 0, z: 0}) { continue; } } } let quad = Quad { pos1: float_pos + Vector3 { x: -0.5 + x as f32, y: -0.5 + 0 as f32, z: z as f32 - 0.5 }, pos4: float_pos + Vector3 { x: -0.5 + x as f32, y: -0.5 + 0 as f32, z: z as f32 + 0.5 }, pos3: float_pos + Vector3 { x: 0.5 + x as f32, y: -0.5 + 0 as f32, z: z as f32 + 0.5 }, pos2: float_pos + Vector3 { x: 0.5 + x as f32, y: -0.5 + 0 as f32, z: z as f32 - 0.5 }, raster_pos: cgmath::Vector2 { x: x as u32, y: z as u32 }, volume_index: self.memory_start as u32, facing: vertex::Facing::Front }; quads.push(quad); } } //back sides of the volumes, front side of the block for x in 0..self.size_x { for z in 0..self.size_z { let index = x * self.size_z + z; if self.color_back.len() <= 0 { continue; } if self.neighbor_back.len() > index { if let Some(_) = self.neighbor_back[index] { if self.color_back[index] == (Vector3 {x: 0, y: 0, z: 0}) { continue; } } } let quad = Quad { pos4: float_pos + Vector3 { x: -0.5 + x as f32, y: -0.5 + self.size_y as f32, z: z as f32 - 0.5 }, pos1: float_pos + Vector3 { x: -0.5 + x as f32, y: -0.5 + self.size_y as f32, z: z as f32 + 0.5 }, pos2: float_pos + Vector3 { x: 0.5 + x as f32, y: -0.5 + self.size_y as f32, z: z as f32 + 0.5 }, pos3: float_pos + Vector3 { x: 0.5 + x as f32, y: -0.5 + self.size_y as f32, z: z as f32 - 0.5 }, raster_pos: cgmath::Vector2 { x: x as u32, y: z as u32 }, volume_index: self.memory_start as u32, facing: vertex::Facing::Back }; quads.push(quad); } } //left sides of the volumes, right side of the block for y in 0..self.size_y { for z in 0..self.size_z { let index = y * self.size_z + z; if self.color_left.len() <= 0 { continue; } if self.neighbor_left.len() > index { if let Some(_) = self.neighbor_left[index] { if self.color_left[index] == (Vector3 {x: 0, y: 0, z: 0}) { continue; } } } let quad = Quad { pos4: float_pos + Vector3 { x: -0.5 + 0.0 as f32, y: y as f32 - 0.5, z: z as f32 - 0.5 }, pos1: float_pos + Vector3 { x: -0.5 + 0.0 as f32, y: y as f32 - 0.5, z: z as f32 + 0.5 }, pos2: float_pos + Vector3 { x: -0.5 + 0.0 as f32, y: y as f32 + 0.5, z: z as f32 + 0.5 }, pos3: float_pos + Vector3 { x: -0.5 + 0.0 as f32, y: y as f32 + 0.5, z: z as f32 - 0.5 }, raster_pos: cgmath::Vector2 { x: y as u32, y: z as u32 }, volume_index: self.memory_start as u32, facing: vertex::Facing::Left }; quads.push(quad); } } //right sides of the volumes, left side of the block for y in 0..self.size_y { for z in 0..self.size_z { let index = y * self.size_z + z; if self.color_right.len() <= 0 { continue; } if self.neighbor_right.len() > index { if let Some(_) = self.neighbor_right[index] { if self.color_right[index] == (Vector3 {x: 0, y: 0, z: 0}) { continue; } } } let quad = Quad { pos1: float_pos + Vector3 { x: -0.5 + self.size_x as f32, y: y as f32 - 0.5, z: z as f32 - 0.5 }, pos4: float_pos + Vector3 { x: -0.5 + self.size_x as f32, y: y as f32 - 0.5, z: z as f32 + 0.5 }, pos3: float_pos + Vector3 { x: -0.5 + self.size_x as f32, y: y as f32 + 0.5, z: z as f32 + 0.5 }, pos2: float_pos + Vector3 { x: -0.5 + self.size_x as f32, y: y as f32 + 0.5, z: z as f32 - 0.5 }, raster_pos: cgmath::Vector2 { x: y as u32, y: z as u32 }, volume_index: self.memory_start as u32, facing: vertex::Facing::Right }; quads.push(quad); } } quads } // MARK: Get Buffer Mem Size pub fn get_buffer_mem_size(&self, light_number: u32) -> u32 { let mut mem_size: u32 = 0; mem_size += 3; //pos mem_size += 3; //max sizes mem_size += light_number; // light references mem_size += 12; //color/roughness buffer sizes, 2 values each mem_size += 12; //neighbor buffer sizes, 2 values each // this covers full color and roughness mem_size += (self.color_top.len() as u32).max(1); mem_size += (self.color_bottom.len() as u32).max(1); mem_size += (self.color_left.len() as u32).max(1); mem_size += (self.color_right.len() as u32).max(1); mem_size += (self.color_front.len() as u32).max(1); mem_size += (self.color_back.len() as u32).max(1); mem_size += (self.neighbor_top.len() as u32).max(1); mem_size += (self.neighbor_bottom.len() as u32).max(1); mem_size += (self.neighbor_left.len() as u32).max(1); mem_size += (self.neighbor_right.len() as u32).max(1); mem_size += (self.neighbor_front.len() as u32).max(1); mem_size += (self.neighbor_back.len() as u32).max(1); mem_size } // MARK: insert into Memory pub fn insert_into_memory(&self, mut v: Vec<u32>, light_number: u32, lights: &Vec<PointLight>) -> Vec<u32> { let mut mem_index = self.memory_start; //pos v[mem_index] = self.position.x as u32; mem_index += 1; v[mem_index] = self.position.y as u32; mem_index += 1; v[mem_index] = self.position.z as u32; mem_index += 1; //max sizes v[mem_index] = self.size_x as u32; mem_index += 1; v[mem_index] = self.size_y as u32; mem_index += 1; v[mem_index] = self.size_z as u32; mem_index += 1; //Todo: insert lights let selected_lights = self.select_lights(lights, light_number); for light in selected_lights { v[mem_index] = light; mem_index += 1; } //color/roughness buffer sizes, 2 values each if self.color_top.len() > 1 { v[mem_index] = self.size_x as u32; v[mem_index + 1] = self.size_y as u32; } else { v[mem_index] = 1; v[mem_index + 1] = 1; } mem_index += 2; if self.color_bottom.len() > 1 { v[mem_index] = self.size_x as u32; v[mem_index + 1] = self.size_y as u32; } else { v[mem_index] = 1; v[mem_index + 1] = 1; } mem_index += 2; if self.color_left.len() > 1 { v[mem_index] = self.size_y as u32; v[mem_index + 1] = self.size_z as u32; } else { v[mem_index] = 1; v[mem_index + 1] = 1; } mem_index += 2; if self.color_right.len() > 1 { v[mem_index] = self.size_y as u32; v[mem_index + 1] = self.size_z as u32; } else { v[mem_index] = 1; v[mem_index + 1] = 1; } mem_index += 2; if self.color_front.len() > 1 { v[mem_index] = self.size_x as u32; v[mem_index + 1] = self.size_z as u32; } else { v[mem_index] = 1; v[mem_index + 1] = 1; } mem_index += 2; if self.color_back.len() > 1 { v[mem_index] = self.size_x as u32; v[mem_index + 1] = self.size_z as u32; } else { v[mem_index] = 1; v[mem_index + 1] = 1; } mem_index += 2; //neighbor buffer sizes, 2 values each if self.neighbor_top.len() > 1 { v[mem_index] = self.size_x as u32; v[mem_index + 1] = self.size_y as u32; } else { v[mem_index] = 1; v[mem_index + 1] = 1; } mem_index += 2; if self.neighbor_bottom.len() > 1 { v[mem_index] = self.size_x as u32; v[mem_index + 1] = self.size_y as u32; } else { v[mem_index] = 1; v[mem_index + 1] = 1; } mem_index += 2; if self.neighbor_left.len() > 1 { v[mem_index] = self.size_y as u32; v[mem_index + 1] = self.size_z as u32; } else { v[mem_index] = 1; v[mem_index + 1] = 1; } mem_index += 2; if self.neighbor_right.len() > 1 { v[mem_index] = self.size_y as u32; v[mem_index + 1] = self.size_z as u32; } else { v[mem_index] = 1; v[mem_index + 1] = 1; } mem_index += 2; if self.neighbor_front.len() > 1 { v[mem_index] = self.size_x as u32; v[mem_index + 1] = self.size_z as u32; } else { v[mem_index] = 1; v[mem_index + 1] = 1; } mem_index += 2; if self.neighbor_back.len() > 1 { v[mem_index] = self.size_x as u32; v[mem_index + 1] = self.size_z as u32; } else { v[mem_index] = 1; v[mem_index + 1] = 1; } mem_index += 2; //color and roughness //check which endian should be used in conjun´ction of the graphicscard (might already be handled by vulkan) if self.color_top.len() > 0 { for index in 0..self.color_top.len() { let value = &self.color_top[index]; let roughness = self.roughness_top[index]; let test : u32 = 5; v[mem_index] = u32::from_ne_bytes([value.x, value.y, value.z, roughness]); mem_index += 1; } } else { v[mem_index] = u32::from_ne_bytes([0, 0, 0, 0]); mem_index += 1; } if self.color_bottom.len() > 0 { for index in 0..self.color_bottom.len() { let value = &self.color_bottom[index]; let roughness = self.roughness_bottom[index]; let test : u32 = 5; v[mem_index] = u32::from_ne_bytes([value.x, value.y, value.z, roughness]); mem_index += 1; } } else { v[mem_index] = u32::from_ne_bytes([0, 0, 0, 0]); mem_index += 1; } if self.color_left.len() > 0 { for index in 0..self.color_left.len() { let value = &self.color_left[index]; let roughness = self.roughness_left[index]; let test : u32 = 5; v[mem_index] = u32::from_ne_bytes([value.x, value.y, value.z, roughness]); mem_index += 1; } } else { v[mem_index] = u32::from_ne_bytes([0, 0, 0, 0]); mem_index += 1; } if self.color_right.len() > 0 { for index in 0..self.color_right.len() { let value = &self.color_right[index]; let roughness = self.roughness_right[index]; let test : u32 = 5; v[mem_index] = u32::from_ne_bytes([value.x, value.y, value.z, roughness]); mem_index += 1; } } else { v[mem_index] = u32::from_ne_bytes([0, 0, 0, 0]); mem_index += 1; } if self.color_front.len() > 0 { for index in 0..self.color_front.len() { let value = &self.color_front[index]; let roughness = self.roughness_front[index]; let test : u32 = 5; v[mem_index] = u32::from_ne_bytes([value.x, value.y, value.z, roughness]); mem_index += 1; } } else { v[mem_index] = u32::from_ne_bytes([0, 0, 0, 0]); mem_index += 1; } if self.color_back.len() > 0 { for index in 0..self.color_back.len() { let value = &self.color_back[index]; let roughness = self.roughness_back[index]; let test : u32 = 5; v[mem_index] = u32::from_ne_bytes([value.x, value.y, value.z, roughness]); mem_index += 1; } } else { v[mem_index] = u32::from_ne_bytes([0, 0, 0, 0]); mem_index += 1; } // neighbors if self.neighbor_top.len() > 0 { for nvalue in &self.neighbor_top { if let Some(reference) = nvalue { v[mem_index] = reference.borrow().memory_start as u32; } else { v[mem_index] = 0; } mem_index += 1; } } else { v[mem_index] = 0; mem_index += 1; } if self.neighbor_bottom.len() > 0 { for nvalue in &self.neighbor_bottom { if let Some(reference) = nvalue { v[mem_index] = reference.borrow().memory_start as u32; } else { v[mem_index] = 0; } mem_index += 1; } } else { v[mem_index] = 0; mem_index += 1; } if self.neighbor_left.len() > 0 { for nvalue in &self.neighbor_left { if let Some(reference) = nvalue { v[mem_index] = reference.borrow().memory_start as u32; } else { v[mem_index] = 0; } mem_index += 1; } } else { v[mem_index] = 0; mem_index += 1; } if self.neighbor_right.len() > 0 { for nvalue in &self.neighbor_right { if let Some(reference) = nvalue { v[mem_index] = reference.borrow().memory_start as u32; } else { v[mem_index] = 0; } mem_index += 1; } } else { v[mem_index] = 0; mem_index += 1; } if self.neighbor_front.len() > 0 { for nvalue in &self.neighbor_front { if let Some(reference) = nvalue { v[mem_index] = reference.borrow().memory_start as u32; } else { v[mem_index] = 0; } mem_index += 1; } } else { v[mem_index] = 0; mem_index += 1; } if self.neighbor_back.len() > 0 { for nvalue in &self.neighbor_back { if let Some(reference) = nvalue { v[mem_index] = reference.borrow().memory_start as u32; } else { v[mem_index] = 0; } mem_index += 1; } } else { v[mem_index] = 0; mem_index += 1; } println!("last memory index of volume was {}, equivalent to {}kB", mem_index, mem_index * 32 / 8 / 1024); v } pub fn select_lights(&self, lights: &Vec<PointLight>, light_number: u32) -> Vec<u32> { let center = self.position + Vector3{x: self.size_x / 2, y: self.size_y / 2, z: self.size_z / 2}; let mut weighted_indices = vec![]; for light in lights { let weight = light.weighted_distance(center); weighted_indices.push((weight, light.memory_start)); } weighted_indices.sort_by(|a, b| a.0.partial_cmp(&b.0).unwrap()); let mut out_index = vec![]; for index in 0..weighted_indices.len() { out_index.push(weighted_indices[weighted_indices.len() - (index + 1)].1 as u32); if out_index.len() == light_number as usize { break; } } while out_index.len() < light_number as usize { out_index.push(0); } out_index } } impl PartialEq for EmptyVolume { fn eq(&self, other: &Self) -> bool { self.position == other.position && self.size_x == other.size_x && self.size_y == other.size_y && self.size_z == other.size_z } }