#version 450 layout(binding = 0) uniform UniformBufferObject { mat4 model; mat4 geom_rot; mat4 view; mat4 proj; vec3 camera_pos; bool[16] use_geom_shader; } ubo; layout(binding = 3) readonly buffer CompoundBuffer { uint compounds[]; }; layout(binding = 4) readonly buffer ColorBuffer { uint grid_in[]; }; layout(binding = 9) readonly buffer TransparentBuffer { bool transparent_grid[]; }; layout(binding = 8) readonly buffer SizeBuffer3D { uint grid_size_in[]; }; layout(binding = 10) buffer OutMemory { uint out_memory[]; }; layout(binding = 2) readonly buffer SceneInfoBuffer{ uint infos[]; } scene_info; uint max_num_lights = scene_info.infos[0]; layout (local_size_x = 16, local_size_y = 1, local_size_z = 1) in; uint num_nodes(uint size) { uint nodes = 0; uint add_size = 1; while (size >= 2) { nodes += add_size; add_size = add_size * 8; size = size / 2; } return nodes; } layout(binding = 5) buffer SizedVertices { float vertices[]; }; layout(binding = 6) buffer Indices { uint indices[]; }; vec3 unpack_color(uint val) { // left most 8 bits first uint val1 = (val >> 24); uint val2 = (val << 8) >> 24; uint val3 = (val << 16) >> 24; uint val4 = (val << 24) >> 24; return vec3(val4 / 255.0, val3 / 255.0, val2 / 255.0); } void add_cube(uint cube_num, float scale, vec3 pos, vec3 color) { // add node info for the cube //vertice 0 vertices[(cube_num * 8 + 0) * 11 + 0] = pos.x - 0.5 * scale; vertices[(cube_num * 8 + 0) * 11 + 1] = pos.y + 0.5 * scale; vertices[(cube_num * 8 + 0) * 11 + 2] = pos.z + 0.5 * scale; vertices[(cube_num * 8 + 0) * 11 + 3] = color.x; vertices[(cube_num * 8 + 0) * 11 + 4] = color.y; vertices[(cube_num * 8 + 0) * 11 + 5] = color.z; //vertice 1 vertices[(cube_num * 8 + 1) * 11 + 0] = pos.x + 0.5 * scale; vertices[(cube_num * 8 + 1) * 11 + 1] = pos.y + 0.5 * scale; vertices[(cube_num * 8 + 1) * 11 + 2] = pos.z + 0.5 * scale; vertices[(cube_num * 8 + 1) * 11 + 3] = color.x; vertices[(cube_num * 8 + 1) * 11 + 4] = color.y; vertices[(cube_num * 8 + 1) * 11 + 5] = color.z; //vertice 2 vertices[(cube_num * 8 + 2) * 11 + 0] = pos.x - 0.5 * scale; vertices[(cube_num * 8 + 2) * 11 + 1] = pos.y - 0.5 * scale; vertices[(cube_num * 8 + 2) * 11 + 2] = pos.z + 0.5 * scale; vertices[(cube_num * 8 + 2) * 11 + 3] = color.x; vertices[(cube_num * 8 + 2) * 11 + 4] = color.y; vertices[(cube_num * 8 + 2) * 11 + 5] = color.z; //vertice 3 vertices[(cube_num * 8 + 3) * 11 + 0] = pos.x + 0.5 * scale; vertices[(cube_num * 8 + 3) * 11 + 1] = pos.y - 0.5 * scale; vertices[(cube_num * 8 + 3) * 11 + 2] = pos.z + 0.5 * scale; vertices[(cube_num * 8 + 3) * 11 + 3] = color.x; vertices[(cube_num * 8 + 3) * 11 + 4] = color.y; vertices[(cube_num * 8 + 3) * 11 + 5] = color.z; //vertice 4 vertices[(cube_num * 8 + 4) * 11 + 0] = pos.x - 0.5 * scale; vertices[(cube_num * 8 + 4) * 11 + 1] = pos.y + 0.5 * scale; vertices[(cube_num * 8 + 4) * 11 + 2] = pos.z - 0.5 * scale; vertices[(cube_num * 8 + 4) * 11 + 3] = color.x; vertices[(cube_num * 8 + 4) * 11 + 4] = color.y; vertices[(cube_num * 8 + 4) * 11 + 5] = color.z; //vertice 5 vertices[(cube_num * 8 + 5) * 11 + 0] = pos.x + 0.5 * scale; vertices[(cube_num * 8 + 5) * 11 + 1] = pos.y + 0.5 * scale; vertices[(cube_num * 8 + 5) * 11 + 2] = pos.z - 0.5 * scale; vertices[(cube_num * 8 + 5) * 11 + 3] = color.x; vertices[(cube_num * 8 + 5) * 11 + 4] = color.y; vertices[(cube_num * 8 + 5) * 11 + 5] = color.z; //vertice 6 vertices[(cube_num * 8 + 6) * 11 + 0] = pos.x - 0.5 * scale; vertices[(cube_num * 8 + 6) * 11 + 1] = pos.y - 0.5 * scale; vertices[(cube_num * 8 + 6) * 11 + 2] = pos.z - 0.5 * scale; vertices[(cube_num * 8 + 6) * 11 + 3] = color.x; vertices[(cube_num * 8 + 6) * 11 + 4] = color.y; vertices[(cube_num * 8 + 6) * 11 + 5] = color.z; //vertice 7 vertices[(cube_num * 8 + 7) * 11 + 0] = pos.x + 0.5 * scale; vertices[(cube_num * 8 + 7) * 11 + 1] = pos.y - 0.5 * scale; vertices[(cube_num * 8 + 7) * 11 + 2] = pos.z - 0.5 * scale; vertices[(cube_num * 8 + 7) * 11 + 3] = color.x; vertices[(cube_num * 8 + 7) * 11 + 4] = color.y; vertices[(cube_num * 8 + 7) * 11 + 5] = color.z; //add indices for the cube //top indices[cube_num * 36 + 0] = cube_num * 8 + 3; indices[cube_num * 36 + 1] = cube_num * 8 + 0; indices[cube_num * 36 + 2] = cube_num * 8 + 2; indices[cube_num * 36 + 3] = cube_num * 8 + 3; indices[cube_num * 36 + 4] = cube_num * 8 + 1; indices[cube_num * 36 + 5] = cube_num * 8 + 0; //bottom indices[cube_num * 36 + 6] = cube_num * 8 + 6; indices[cube_num * 36 + 7] = cube_num * 8 + 4; indices[cube_num * 36 + 8] = cube_num * 8 + 7; indices[cube_num * 36 + 9] = cube_num * 8 + 4; indices[cube_num * 36 + 10] = cube_num * 8 + 5; indices[cube_num * 36 + 11] = cube_num * 8 + 7; //left indices[cube_num * 36 + 12] = cube_num * 8 + 0; indices[cube_num * 36 + 13] = cube_num * 8 + 4; indices[cube_num * 36 + 14] = cube_num * 8 + 2; indices[cube_num * 36 + 15] = cube_num * 8 + 6; indices[cube_num * 36 + 16] = cube_num * 8 + 2; indices[cube_num * 36 + 17] = cube_num * 8 + 4; //right indices[cube_num * 36 + 18] = cube_num * 8 + 1; indices[cube_num * 36 + 19] = cube_num * 8 + 3; indices[cube_num * 36 + 20] = cube_num * 8 + 5; indices[cube_num * 36 + 21] = cube_num * 8 + 5; indices[cube_num * 36 + 22] = cube_num * 8 + 3; indices[cube_num * 36 + 23] = cube_num * 8 + 7; //near indices[cube_num * 36 + 24] = cube_num * 8 + 6; indices[cube_num * 36 + 25] = cube_num * 8 + 3; indices[cube_num * 36 + 26] = cube_num * 8 + 2; indices[cube_num * 36 + 27] = cube_num * 8 + 3; indices[cube_num * 36 + 28] = cube_num * 8 + 6; indices[cube_num * 36 + 29] = cube_num * 8 + 7; //far indices[cube_num * 36 + 30] = cube_num * 8 + 0; indices[cube_num * 36 + 31] = cube_num * 8 + 1; indices[cube_num * 36 + 32] = cube_num * 8 + 4; indices[cube_num * 36 + 33] = cube_num * 8 + 5; indices[cube_num * 36 + 34] = cube_num * 8 + 4; indices[cube_num * 36 + 35] = cube_num * 8 + 1; } uint cohort_index_from_pos(uint x, uint y, uint z, uint block_size, uint compound_size) { uint steps = compound_size / block_size; return (z / block_size) * (steps*steps) + (y / block_size) * steps + (x / block_size); } void main() { uint index = gl_GlobalInvocationID.x; uint output_offset = 1; uint input_offset = 0; uint compound_start = 1; uint nodes = num_nodes(compounds[compound_start]); // iterate over the compounds and find the work index inside of it while (index > nodes) { input_offset += compounds[compound_start] * compounds[compound_start] * compounds[compound_start]; index -= nodes; compound_start = compounds[compound_start + 2]; nodes = num_nodes(compounds[compound_start]); } output_offset = compounds[compound_start + 8]; uint compound_grid_size = compounds[compound_start]; uint parent_start = 0; uint cohort_start = 0; uint cohort_index = index; uint size = compounds[compound_start]; nodes = 0; uint add_size = 1; while (cohort_index >= add_size) { nodes += add_size; cohort_index -= add_size; parent_start = cohort_start; cohort_start = nodes * 9; add_size *= 8; size = size / 2; } uint steps = compounds[compound_start] / size; float compound_scale = uintBitsToFloat(compounds[compound_start + 1]); vec3 mid_offset = vec3(compound_scale * 0.5, compound_scale * 0.5, compound_scale * 0.5); uint x_no_offset = (cohort_index % steps) * size; uint y_no_offset = (((cohort_index - (cohort_index % steps)) % (steps * steps)) / (steps)) * size; uint z_no_offset = (((cohort_index - (cohort_index % (steps * steps)))) / (steps * steps)) * size; uint parent_size = size * 2; uint parent_steps = compounds[compound_start] / parent_size; uint x_parent = uint(floor(float(x_no_offset) / float(parent_size))) * parent_size; uint y_parent = uint(floor(float(y_no_offset) / float(parent_size))) * parent_size; uint z_parent = uint(floor(float(z_no_offset) / float(parent_size))) * parent_size; uint parent = output_offset + parent_start + cohort_index_from_pos(x_parent, y_parent, z_parent, parent_size, compound_grid_size) * 9;; if (size == compounds[compound_start]) { parent = 0; } // plus one size offset, since we want to place the nodes at the far end. This aligns with the iteration directions in the previous shaders uint x = x_no_offset + (size - 1); uint y = y_no_offset + (size - 1); uint z = z_no_offset + (size - 1); // sum of all elements with coordinates lower than x, y, z uint contained_entries = grid_size_in[input_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z]; if (z > size) { // remove contained from z neighbor contained_entries = contained_entries - grid_size_in[input_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z - size]; } if (y > size) { if (z > size) { // add back the section we will remove twice contained_entries = contained_entries + int(grid_size_in[input_offset + x * compound_grid_size * compound_grid_size + (y - size) * compound_grid_size + z - size]); } // remove contained from y neighbor contained_entries = contained_entries - int(grid_size_in[input_offset + x * compound_grid_size * compound_grid_size + (y - size) * compound_grid_size + z]); } if (x > size) { if (z > size) { // add the portion already removed through the z neighbor contained_entries = contained_entries + grid_size_in[input_offset + (x - size) * compound_grid_size * compound_grid_size + y * compound_grid_size + z - size]; } if (y > size) { // add the portion already removed by the y neighbor contained_entries = contained_entries + grid_size_in[input_offset + (x - size) * compound_grid_size * compound_grid_size + (y - size) * compound_grid_size + z]; if (z > size) { // remove the portion already added through the z neighbor contained_entries = contained_entries - grid_size_in[input_offset + (x - size) * compound_grid_size * compound_grid_size + (y - size) * compound_grid_size + z - size]; } } // remove contained from x neighbor contained_entries = contained_entries - grid_size_in[input_offset + (x - size) * compound_grid_size * compound_grid_size + y * compound_grid_size + z]; } if (contained_entries > 0) { out_memory[output_offset + cohort_start + cohort_index * 9 + 0] = parent; if (size > 2) { // add child node reference uint child_size = size / 2; uint cohort_end = cohort_start + 9 * add_size; out_memory[output_offset + cohort_start + cohort_index * 9 + 1] = output_offset + cohort_end + cohort_index_from_pos(x_no_offset, y_no_offset, z_no_offset, child_size, compound_grid_size) * 9; // xyz out_memory[output_offset + cohort_start + cohort_index * 9 + 2] = output_offset + cohort_end + cohort_index_from_pos(x_no_offset + child_size, y_no_offset, z_no_offset, child_size, compound_grid_size) * 9; // Xyz out_memory[output_offset + cohort_start + cohort_index * 9 + 3] = output_offset + cohort_end + cohort_index_from_pos(x_no_offset, y_no_offset + child_size, z_no_offset, child_size, compound_grid_size) * 9; // xYz out_memory[output_offset + cohort_start + cohort_index * 9 + 4] = output_offset + cohort_end + cohort_index_from_pos(x_no_offset + child_size, y_no_offset + child_size, z_no_offset, child_size, compound_grid_size) * 9; // XYz out_memory[output_offset + cohort_start + cohort_index * 9 + 5] = output_offset + cohort_end + cohort_index_from_pos(x_no_offset, y_no_offset, z_no_offset + child_size, child_size, compound_grid_size) * 9; // xyZ out_memory[output_offset + cohort_start + cohort_index * 9 + 6] = output_offset + cohort_end + cohort_index_from_pos(x_no_offset + child_size, y_no_offset, z_no_offset + child_size, child_size, compound_grid_size) * 9; // XyZ out_memory[output_offset + cohort_start + cohort_index * 9 + 7] = output_offset + cohort_end + cohort_index_from_pos(x_no_offset, y_no_offset + child_size, z_no_offset + child_size, child_size, compound_grid_size) * 9; // xYZ out_memory[output_offset + cohort_start + cohort_index * 9 + 8] = output_offset + cohort_end + cohort_index_from_pos(x_no_offset + child_size, y_no_offset + child_size, z_no_offset + child_size, child_size, compound_grid_size) * 9; // XYZ } else { // copy color values and add cubes to rendering out_memory[output_offset + cohort_start + cohort_index * 9 + 1] = grid_in[input_offset + (x - 1) * compound_grid_size * compound_grid_size + (y - 1) * compound_grid_size + (z - 1)]; // xyz out_memory[output_offset + cohort_start + cohort_index * 9 + 2] = grid_in[input_offset + (x - 0) * compound_grid_size * compound_grid_size + (y - 1) * compound_grid_size + (z - 1)]; // Xyz out_memory[output_offset + cohort_start + cohort_index * 9 + 3] = grid_in[input_offset + (x - 1) * compound_grid_size * compound_grid_size + (y - 0) * compound_grid_size + (z - 1)]; // xYz out_memory[output_offset + cohort_start + cohort_index * 9 + 4] = grid_in[input_offset + (x - 0) * compound_grid_size * compound_grid_size + (y - 0) * compound_grid_size + (z - 1)]; // XYz out_memory[output_offset + cohort_start + cohort_index * 9 + 5] = grid_in[input_offset + (x - 1) * compound_grid_size * compound_grid_size + (y - 1) * compound_grid_size + (z - 0)]; // xyZ out_memory[output_offset + cohort_start + cohort_index * 9 + 6] = grid_in[input_offset + (x - 0) * compound_grid_size * compound_grid_size + (y - 1) * compound_grid_size + (z - 0)]; // XyZ out_memory[output_offset + cohort_start + cohort_index * 9 + 7] = grid_in[input_offset + (x - 1) * compound_grid_size * compound_grid_size + (y - 0) * compound_grid_size + (z - 0)]; // xYZ out_memory[output_offset + cohort_start + cohort_index * 9 + 8] = grid_in[input_offset + (x - 0) * compound_grid_size * compound_grid_size + (y - 0) * compound_grid_size + (z - 0)]; // XYZ vec3 compound_pos = vec3(uintBitsToFloat(compounds[compound_start + 5]), uintBitsToFloat(compounds[compound_start + 6]), uintBitsToFloat(compounds[compound_start + 7])); vec3 check_pos = compound_pos + vec3(float(x) * compound_scale, float(y) * compound_scale, float(z) * compound_scale) + mid_offset; if (out_memory[output_offset + cohort_start + cohort_index * 9 + 1] != 0) { add_cube(input_offset + (z - 1) * compound_grid_size * compound_grid_size + (y - 1) * compound_grid_size + (x - 1), compound_scale, check_pos - vec3(1.0, 1.0, 1.0) * compound_scale, unpack_color(out_memory[output_offset + cohort_start + cohort_index * 9 + 1])); } if (out_memory[output_offset + cohort_start + cohort_index * 9 + 2] != 0) { add_cube(input_offset + (z - 1) * compound_grid_size * compound_grid_size + (y - 1) * compound_grid_size + (x - 0), compound_scale, check_pos - vec3(0.0, 1.0, 1.0) * compound_scale, unpack_color(out_memory[output_offset + cohort_start + cohort_index * 9 + 2])); } if (out_memory[output_offset + cohort_start + cohort_index * 9 + 3] != 0) { add_cube(input_offset + (z - 1) * compound_grid_size * compound_grid_size + (y - 0) * compound_grid_size + (x - 1), compound_scale, check_pos - vec3(1.0, 0.0, 1.0) * compound_scale, unpack_color(out_memory[output_offset + cohort_start + cohort_index * 9 + 3])); } if (out_memory[output_offset + cohort_start + cohort_index * 9 + 4] != 0) { add_cube(input_offset + (z - 1) * compound_grid_size * compound_grid_size + (y - 0) * compound_grid_size + (x - 0), compound_scale, check_pos - vec3(0.0, 0.0, 1.0) * compound_scale, unpack_color(out_memory[output_offset + cohort_start + cohort_index * 9 + 4])); } if (out_memory[output_offset + cohort_start + cohort_index * 9 + 5] != 0) { add_cube(input_offset + (z - 0) * compound_grid_size * compound_grid_size + (y - 1) * compound_grid_size + (x - 1), compound_scale, check_pos - vec3(1.0, 1.0, 0.0) * compound_scale, unpack_color(out_memory[output_offset + cohort_start + cohort_index * 9 + 5])); } if (out_memory[output_offset + cohort_start + cohort_index * 9 + 6] != 0) { add_cube(input_offset + (z - 0) * compound_grid_size * compound_grid_size + (y - 1) * compound_grid_size + (x - 0), compound_scale, check_pos - vec3(0.0, 1.0, 0.0) * compound_scale, unpack_color(out_memory[output_offset + cohort_start + cohort_index * 9 + 6])); } if (out_memory[output_offset + cohort_start + cohort_index * 9 + 7] != 0) { add_cube(input_offset + (z - 0) * compound_grid_size * compound_grid_size + (y - 0) * compound_grid_size + (x - 1), compound_scale, check_pos - vec3(1.0, 0.0, 0.0) * compound_scale, unpack_color(out_memory[output_offset + cohort_start + cohort_index * 9 + 7])); } if (out_memory[output_offset + cohort_start + cohort_index * 9 + 8] != 0) { add_cube(input_offset + (z - 0) * compound_grid_size * compound_grid_size + (y - 0) * compound_grid_size + (x - 0), compound_scale, check_pos - vec3(0.0, 0.0, 0.0) * compound_scale, unpack_color(out_memory[output_offset + cohort_start + cohort_index * 9 + 8])); } } } else { out_memory[output_offset + cohort_start + cohort_index * 9 + 0] = 0; out_memory[output_offset + cohort_start + cohort_index * 9 + 1] = 0; out_memory[output_offset + cohort_start + cohort_index * 9 + 2] = 0; out_memory[output_offset + cohort_start + cohort_index * 9 + 3] = 0; out_memory[output_offset + cohort_start + cohort_index * 9 + 4] = 0; out_memory[output_offset + cohort_start + cohort_index * 9 + 5] = 0; out_memory[output_offset + cohort_start + cohort_index * 9 + 6] = 0; out_memory[output_offset + cohort_start + cohort_index * 9 + 7] = 0; out_memory[output_offset + cohort_start + cohort_index * 9 + 8] = 0; } }