adds sparse oct_tree generation in compute

This commit is contained in:
zomseffen 2025-04-28 11:03:19 +02:00
parent 37d816fc98
commit 51760f30f1
22 changed files with 498 additions and 214 deletions

View file

@ -18,7 +18,7 @@ fn main() {
println!("cargo::rerun-if-changed=shaders/rt_compute_grow_one.comp");
println!("cargo::rerun-if-changed=shaders/rt_compute_grow_two.comp");
println!("cargo::rerun-if-changed=shaders/rt_compute_grow_three.comp");
println!("cargo::rerun-if-changed=shaders/rt_compute_combine.comp");
println!("cargo::rerun-if-changed=shaders/rt_compute_mempos.comp");
std::fs::remove_file("shaders/compiled/geo_cube.spv").unwrap_or(());
std::fs::remove_file("shaders/compiled/frag_cube.spv").unwrap_or(());
@ -32,7 +32,7 @@ fn main() {
std::fs::remove_file("shaders/compiled/rt_compute_grow_one.spv").unwrap_or(());
std::fs::remove_file("shaders/compiled/rt_compute_grow_two.spv").unwrap_or(());
std::fs::remove_file("shaders/compiled/rt_compute_grow_three.spv").unwrap_or(());
std::fs::remove_file("shaders/compiled/rt_compute_combine.spv").unwrap_or(());
std::fs::remove_file("shaders/compiled/rt_compute_mempos.spv").unwrap_or(());
if std::env::consts::OS == "windows" {
let mut command = Command::new("./shaders/compile.bat");

View file

@ -13,4 +13,4 @@ C:/VulkanSDK/1.3.280.0/Bin/glslc.exe shaders/rt_compute_rasterize.comp -o shader
C:/VulkanSDK/1.3.280.0/Bin/glslc.exe shaders/rt_compute_grow_one.comp -o shaders/compiled/rt_compute_grow_one.spv
C:/VulkanSDK/1.3.280.0/Bin/glslc.exe shaders/rt_compute_grow_two.comp -o shaders/compiled/rt_compute_grow_two.spv
C:/VulkanSDK/1.3.280.0/Bin/glslc.exe shaders/rt_compute_grow_three.comp -o shaders/compiled/rt_compute_grow_three.spv
C:/VulkanSDK/1.3.280.0/Bin/glslc.exe shaders/rt_compute_combine.comp -o shaders/compiled/rt_compute_combine.spv
C:/VulkanSDK/1.3.280.0/Bin/glslc.exe shaders/rt_compute_mempos.comp -o shaders/compiled/rt_compute_mempos.spv

View file

@ -14,4 +14,4 @@ glslc shaders/rt_compute_rasterize.comp -o shaders/compiled/rt_compute_rasterize
glslc shaders/rt_compute_grow_one.comp -o shaders/compiled/rt_compute_grow_one.spv
glslc shaders/rt_compute_grow_two.comp -o shaders/compiled/rt_compute_grow_two.spv
glslc shaders/rt_compute_grow_three.comp -o shaders/compiled/rt_compute_grow_three.spv
glslc shaders/rt_compute_combine.comp -o shaders/compiled/rt_compute_combine.spv
glslc shaders/rt_compute_mempos.comp -o shaders/compiled/rt_compute_mempos.spv

Binary file not shown.

View file

@ -1,51 +0,0 @@
#version 450
layout(binding = 0) uniform UniformBufferObject {
mat4 model;
mat4 geom_rot;
mat4 view;
mat4 proj;
vec3 camera_pos;
bool[16] use_geom_shader;
} ubo;
layout(binding = 3) readonly buffer CompoundBuffer {
uint compounds[];
};
layout(binding = 4) readonly buffer ColorBuffer {
uint grid_in[];
};
layout(binding = 9) readonly buffer TransparentBuffer {
bool transparent_grid[];
};
layout(binding = 8) buffer SizeBuffer3D {
uint grid_size_in[];
};
layout (local_size_x = 16, local_size_y = 1, local_size_z = 1) in;
void main() {
uint index = gl_GlobalInvocationID.x;
uint output_offset = 0;
uint compound_start = 0;
// iterate over the compounds and find the work index inside of it
while (index > compounds[compound_start] * compounds[compound_start]) {
output_offset += compounds[compound_start] * compounds[compound_start] * compounds[compound_start] * 2;
index -= compounds[compound_start] * compounds[compound_start];
compound_start = compounds[compound_start + 2];
}
// grid pos in the task
uint compound_grid_size = compounds[compound_start];
float compound_scale = uintBitsToFloat(compounds[compound_start + 1]);
vec3 mid_offset = vec3(compound_scale * 0.5, compound_scale * 0.5, compound_scale * 0.5);
uint x = index % compound_grid_size;
uint y = ((index) % (compound_grid_size * compound_grid_size) - x) / (compound_grid_size);
uint z = (index - x - y * compound_grid_size) / (compound_grid_size * compound_grid_size);
uint size_x = grid_size_in[output_offset + (x * compound_grid_size * compound_grid_size + y * compound_grid_size + z) * 3];
uint size_y = grid_size_in[output_offset + (x * compound_grid_size * compound_grid_size + y * compound_grid_size + z) * 3 + 1];
uint size_z = grid_size_in[output_offset + (x * compound_grid_size * compound_grid_size + y * compound_grid_size + z) * 3 + 2];
}

View file

@ -43,40 +43,11 @@ void main() {
vec3 mid_offset = vec3(compound_scale * 0.5, compound_scale * 0.5, compound_scale * 0.5);
uint y = index % compound_grid_size;
uint z = (index - y) / compound_grid_size;
vec3 compound_pos = vec3(uintBitsToFloat(compounds[compound_start + 5]), uintBitsToFloat(compounds[compound_start + 6]), uintBitsToFloat(compounds[compound_start + 7]));
// iterate upwards along the x axis
bool seen_empty = false;
uint start = 0;
uint last_col = 0;
uint sum = 0;
for (uint x=0; x < compound_grid_size; x++) {
uint color_val = grid_in[output_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z];
bool transparent = transparent_grid[output_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z];
grid_out[output_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z] = 0;
// check if we need to stop a volume
if (color_val != 0 && !transparent) {
// check if we are in a volume right now
if (seen_empty) {
// close the current volume
grid_out[output_offset + start * compound_grid_size * compound_grid_size + y * compound_grid_size + z] = x - start;
seen_empty = false;
last_col = 0;
}
} else {
// check if transparency changed
if (seen_empty && transparent && last_col != color_val) {
// if we switch colors close the current volume and prepare for a new one
grid_out[output_offset + start * compound_grid_size * compound_grid_size + y * compound_grid_size + z] = x - start;
seen_empty = false;
}
// start a new volume if we are not in one right now
if (!seen_empty) {
seen_empty = true;
start = x;
last_col = color_val;
}
}
}
if (seen_empty) {
grid_out[output_offset + start * compound_grid_size * compound_grid_size + y * compound_grid_size + z] = compound_grid_size - start;
sum += uint(color_val != 0);
grid_out[output_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z] = sum;
}
}

View file

@ -37,7 +37,7 @@ void main() {
uint compound_start = 0;
// iterate over the compounds and find the work index inside of it
while (index > compounds[compound_start] * compounds[compound_start]) {
output_offset += compounds[compound_start] * compounds[compound_start] * compounds[compound_start] * 2;
output_offset += compounds[compound_start] * compounds[compound_start] * compounds[compound_start];
index -= compounds[compound_start] * compounds[compound_start];
compound_start = compounds[compound_start + 2];
}
@ -47,55 +47,10 @@ void main() {
vec3 mid_offset = vec3(compound_scale * 0.5, compound_scale * 0.5, compound_scale * 0.5);
uint x = index % compound_grid_size;
uint y = (index - x) / compound_grid_size;
vec3 compound_pos = vec3(uintBitsToFloat(compounds[compound_start + 5]), uintBitsToFloat(compounds[compound_start + 6]), uintBitsToFloat(compounds[compound_start + 7]));
// iterate upwards along the x axis
bool seen_empty = false;
uint start = 0;
uint start_x_size = 0;
uint start_y_size = 0;
uint last_col = 0;
// iterate upwards along the z axis
uint sum = 0;
for (uint z=0; z < compound_grid_size; z++) {
uint color_val = grid_in[output_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z];
bool transparent = transparent_grid[output_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z];
uint current_x_size = grid_size_in[output_offset + (x * compound_grid_size * compound_grid_size + y * compound_grid_size + z) * 2];
uint current_y_size = grid_size_in[output_offset + (x * compound_grid_size * compound_grid_size + y * compound_grid_size + z) * 2 + 1];
grid_out[output_offset + (x * compound_grid_size * compound_grid_size + y * compound_grid_size + z) * 3] = 0;
grid_out[output_offset + (x * compound_grid_size * compound_grid_size + y * compound_grid_size + z) * 3 + 1] = 0;
grid_out[output_offset + (x * compound_grid_size * compound_grid_size + y * compound_grid_size + z) * 3 + 2] = 0;
// check if we need to stop a volume
if (color_val != 0 && !transparent) {
// check if we are in a volume right now
if (seen_empty) {
// close the current volume
grid_out[output_offset + (x * compound_grid_size * compound_grid_size + y * compound_grid_size + start) * 3] = start_x_size;
grid_out[output_offset + (x * compound_grid_size * compound_grid_size + y * compound_grid_size + start) * 3 + 1] = start_y_size;
grid_out[output_offset + (x * compound_grid_size * compound_grid_size + y * compound_grid_size + start) * 3 + 2] = z - start;
seen_empty = false;
last_col = 0;
}
} else {
// check if transparency changed
if (seen_empty && ((transparent && last_col != color_val) || (start_x_size != current_x_size) || (start_y_size != current_y_size))) {
// if we switch colors or size close the current volume and prepare for a new one
grid_out[output_offset + (x * compound_grid_size * compound_grid_size + y * compound_grid_size + start) * 3] = start_x_size;
grid_out[output_offset + (x * compound_grid_size * compound_grid_size + y * compound_grid_size + start) * 3 + 1] = start_y_size;
grid_out[output_offset + (x * compound_grid_size * compound_grid_size + y * compound_grid_size + start) * 3 + 2] = z - start;
seen_empty = false;
}
// start a new volume if we are not in one right now
if (!seen_empty && current_x_size != 0 && current_y_size != 0) {
seen_empty = true;
start = z;
start_x_size = current_x_size;
start_y_size = current_y_size;
last_col = color_val;
}
}
}
if (seen_empty) {
grid_out[output_offset + (x * compound_grid_size * compound_grid_size + y * compound_grid_size + start) * 3] = start_x_size;
grid_out[output_offset + (x * compound_grid_size * compound_grid_size + y * compound_grid_size + start) * 3 + 1] = start_y_size;
grid_out[output_offset + (x * compound_grid_size * compound_grid_size + y * compound_grid_size + start) * 3 + 2] = compound_grid_size - start;
sum += grid_size_in[output_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z];
grid_out[output_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z] = sum;
}
}

View file

@ -37,7 +37,7 @@ void main() {
uint compound_start = 0;
// iterate over the compounds and find the work index inside of it
while (index > compounds[compound_start] * compounds[compound_start]) {
output_offset += compounds[compound_start] * compounds[compound_start] * compounds[compound_start] * 2;
output_offset += compounds[compound_start] * compounds[compound_start] * compounds[compound_start];
index -= compounds[compound_start] * compounds[compound_start];
compound_start = compounds[compound_start + 2];
}
@ -47,48 +47,10 @@ void main() {
vec3 mid_offset = vec3(compound_scale * 0.5, compound_scale * 0.5, compound_scale * 0.5);
uint x = index % compound_grid_size;
uint z = (index - x) / compound_grid_size;
vec3 compound_pos = vec3(uintBitsToFloat(compounds[compound_start + 5]), uintBitsToFloat(compounds[compound_start + 6]), uintBitsToFloat(compounds[compound_start + 7]));
// iterate upwards along the x axis
bool seen_empty = false;
uint start = 0;
uint start_x_size = 0;
uint last_col = 0;
// iterate upwards along the y axis
uint sum = 0;
for (uint y=0; y < compound_grid_size; y++) {
uint color_val = grid_in[output_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z];
bool transparent = transparent_grid[output_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z];
uint current_x_size = grid_size_in[output_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z];
grid_out[output_offset + (x * compound_grid_size * compound_grid_size + y * compound_grid_size + z) * 2] = 0;
grid_out[output_offset + (x * compound_grid_size * compound_grid_size + y * compound_grid_size + z) * 2 + 1] = 0;
// check if we need to stop a volume
if (color_val != 0 && !transparent) {
// check if we are in a volume right now
if (seen_empty) {
// close the current volume
grid_out[output_offset + (x * compound_grid_size * compound_grid_size + start * compound_grid_size + z) * 2] = start_x_size;
grid_out[output_offset + (x * compound_grid_size * compound_grid_size + start * compound_grid_size + z) * 2 + 1] = y - start;
seen_empty = false;
last_col = 0;
}
} else {
// check if transparency changed
if (seen_empty && ((transparent && last_col != color_val) || (start_x_size != current_x_size))) {
// if we switch colors or size close the current volume and prepare for a new one
grid_out[output_offset + (x * compound_grid_size * compound_grid_size + start * compound_grid_size + z) * 2] = start_x_size;
grid_out[output_offset + (x * compound_grid_size * compound_grid_size + start * compound_grid_size + z) * 2 + 1] = y - start;
seen_empty = false;
}
// start a new volume if we are not in one right now
if (!seen_empty && current_x_size != 0) {
seen_empty = true;
start = y;
start_x_size = current_x_size;
last_col = color_val;
}
}
}
if (seen_empty) {
grid_out[output_offset + (x * compound_grid_size * compound_grid_size + start * compound_grid_size + z) * 2] = start_x_size;
grid_out[output_offset + (x * compound_grid_size * compound_grid_size + start * compound_grid_size + z) * 2 + 1] = compound_grid_size - start;
sum += grid_size_in[output_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z];
grid_out[output_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z] = sum;
}
}

View file

@ -0,0 +1,349 @@
#version 450
layout(binding = 0) uniform UniformBufferObject {
mat4 model;
mat4 geom_rot;
mat4 view;
mat4 proj;
vec3 camera_pos;
bool[16] use_geom_shader;
} ubo;
layout(binding = 3) readonly buffer CompoundBuffer {
uint compounds[];
};
layout(binding = 4) readonly buffer ColorBuffer {
uint grid_in[];
};
layout(binding = 9) readonly buffer TransparentBuffer {
bool transparent_grid[];
};
layout(binding = 8) readonly buffer SizeBuffer3D {
uint grid_size_in[];
};
layout(binding = 10) buffer OutMemory {
uint out_memory[];
};
layout(binding = 2) readonly buffer SceneInfoBuffer{
uint infos[];
} scene_info;
uint max_num_lights = scene_info.infos[0];
layout (local_size_x = 16, local_size_y = 1, local_size_z = 1) in;
uint num_nodes(uint size) {
uint nodes = 0;
uint add_size = 1;
while (size >= 2) {
nodes += add_size;
add_size = add_size * 8;
size = size / 2;
}
return nodes;
}
layout(binding = 5) buffer SizedVertices {
float vertices[];
};
layout(binding = 6) buffer Indices {
uint indices[];
};
vec3 unpack_color(uint val) {
// left most 8 bits first
uint val1 = (val >> 24);
uint val2 = (val << 8) >> 24;
uint val3 = (val << 16) >> 24;
uint val4 = (val << 24) >> 24;
return vec3(val4 / 255.0, val3 / 255.0, val2 / 255.0);
}
void add_cube(uint cube_num, float scale, vec3 pos, vec3 color) {
// add node info for the cube
//vertice 0
vertices[(cube_num * 8 + 0) * 11 + 0] = pos.x - 0.5 * scale;
vertices[(cube_num * 8 + 0) * 11 + 1] = pos.y + 0.5 * scale;
vertices[(cube_num * 8 + 0) * 11 + 2] = pos.z + 0.5 * scale;
vertices[(cube_num * 8 + 0) * 11 + 3] = color.x;
vertices[(cube_num * 8 + 0) * 11 + 4] = color.y;
vertices[(cube_num * 8 + 0) * 11 + 5] = color.z;
//vertice 1
vertices[(cube_num * 8 + 1) * 11 + 0] = pos.x + 0.5 * scale;
vertices[(cube_num * 8 + 1) * 11 + 1] = pos.y + 0.5 * scale;
vertices[(cube_num * 8 + 1) * 11 + 2] = pos.z + 0.5 * scale;
vertices[(cube_num * 8 + 1) * 11 + 3] = color.x;
vertices[(cube_num * 8 + 1) * 11 + 4] = color.y;
vertices[(cube_num * 8 + 1) * 11 + 5] = color.z;
//vertice 2
vertices[(cube_num * 8 + 2) * 11 + 0] = pos.x - 0.5 * scale;
vertices[(cube_num * 8 + 2) * 11 + 1] = pos.y - 0.5 * scale;
vertices[(cube_num * 8 + 2) * 11 + 2] = pos.z + 0.5 * scale;
vertices[(cube_num * 8 + 2) * 11 + 3] = color.x;
vertices[(cube_num * 8 + 2) * 11 + 4] = color.y;
vertices[(cube_num * 8 + 2) * 11 + 5] = color.z;
//vertice 3
vertices[(cube_num * 8 + 3) * 11 + 0] = pos.x + 0.5 * scale;
vertices[(cube_num * 8 + 3) * 11 + 1] = pos.y - 0.5 * scale;
vertices[(cube_num * 8 + 3) * 11 + 2] = pos.z + 0.5 * scale;
vertices[(cube_num * 8 + 3) * 11 + 3] = color.x;
vertices[(cube_num * 8 + 3) * 11 + 4] = color.y;
vertices[(cube_num * 8 + 3) * 11 + 5] = color.z;
//vertice 4
vertices[(cube_num * 8 + 4) * 11 + 0] = pos.x - 0.5 * scale;
vertices[(cube_num * 8 + 4) * 11 + 1] = pos.y + 0.5 * scale;
vertices[(cube_num * 8 + 4) * 11 + 2] = pos.z - 0.5 * scale;
vertices[(cube_num * 8 + 4) * 11 + 3] = color.x;
vertices[(cube_num * 8 + 4) * 11 + 4] = color.y;
vertices[(cube_num * 8 + 4) * 11 + 5] = color.z;
//vertice 5
vertices[(cube_num * 8 + 5) * 11 + 0] = pos.x + 0.5 * scale;
vertices[(cube_num * 8 + 5) * 11 + 1] = pos.y + 0.5 * scale;
vertices[(cube_num * 8 + 5) * 11 + 2] = pos.z - 0.5 * scale;
vertices[(cube_num * 8 + 5) * 11 + 3] = color.x;
vertices[(cube_num * 8 + 5) * 11 + 4] = color.y;
vertices[(cube_num * 8 + 5) * 11 + 5] = color.z;
//vertice 6
vertices[(cube_num * 8 + 6) * 11 + 0] = pos.x - 0.5 * scale;
vertices[(cube_num * 8 + 6) * 11 + 1] = pos.y - 0.5 * scale;
vertices[(cube_num * 8 + 6) * 11 + 2] = pos.z - 0.5 * scale;
vertices[(cube_num * 8 + 6) * 11 + 3] = color.x;
vertices[(cube_num * 8 + 6) * 11 + 4] = color.y;
vertices[(cube_num * 8 + 6) * 11 + 5] = color.z;
//vertice 7
vertices[(cube_num * 8 + 7) * 11 + 0] = pos.x + 0.5 * scale;
vertices[(cube_num * 8 + 7) * 11 + 1] = pos.y - 0.5 * scale;
vertices[(cube_num * 8 + 7) * 11 + 2] = pos.z - 0.5 * scale;
vertices[(cube_num * 8 + 7) * 11 + 3] = color.x;
vertices[(cube_num * 8 + 7) * 11 + 4] = color.y;
vertices[(cube_num * 8 + 7) * 11 + 5] = color.z;
//add indices for the cube
//top
indices[cube_num * 36 + 0] = cube_num * 8 + 3;
indices[cube_num * 36 + 1] = cube_num * 8 + 0;
indices[cube_num * 36 + 2] = cube_num * 8 + 2;
indices[cube_num * 36 + 3] = cube_num * 8 + 3;
indices[cube_num * 36 + 4] = cube_num * 8 + 1;
indices[cube_num * 36 + 5] = cube_num * 8 + 0;
//bottom
indices[cube_num * 36 + 6] = cube_num * 8 + 6;
indices[cube_num * 36 + 7] = cube_num * 8 + 4;
indices[cube_num * 36 + 8] = cube_num * 8 + 7;
indices[cube_num * 36 + 9] = cube_num * 8 + 4;
indices[cube_num * 36 + 10] = cube_num * 8 + 5;
indices[cube_num * 36 + 11] = cube_num * 8 + 7;
//left
indices[cube_num * 36 + 12] = cube_num * 8 + 0;
indices[cube_num * 36 + 13] = cube_num * 8 + 4;
indices[cube_num * 36 + 14] = cube_num * 8 + 2;
indices[cube_num * 36 + 15] = cube_num * 8 + 6;
indices[cube_num * 36 + 16] = cube_num * 8 + 2;
indices[cube_num * 36 + 17] = cube_num * 8 + 4;
//right
indices[cube_num * 36 + 18] = cube_num * 8 + 1;
indices[cube_num * 36 + 19] = cube_num * 8 + 3;
indices[cube_num * 36 + 20] = cube_num * 8 + 5;
indices[cube_num * 36 + 21] = cube_num * 8 + 5;
indices[cube_num * 36 + 22] = cube_num * 8 + 3;
indices[cube_num * 36 + 23] = cube_num * 8 + 7;
//near
indices[cube_num * 36 + 24] = cube_num * 8 + 6;
indices[cube_num * 36 + 25] = cube_num * 8 + 3;
indices[cube_num * 36 + 26] = cube_num * 8 + 2;
indices[cube_num * 36 + 27] = cube_num * 8 + 3;
indices[cube_num * 36 + 28] = cube_num * 8 + 6;
indices[cube_num * 36 + 29] = cube_num * 8 + 7;
//far
indices[cube_num * 36 + 30] = cube_num * 8 + 0;
indices[cube_num * 36 + 31] = cube_num * 8 + 1;
indices[cube_num * 36 + 32] = cube_num * 8 + 4;
indices[cube_num * 36 + 33] = cube_num * 8 + 5;
indices[cube_num * 36 + 34] = cube_num * 8 + 4;
indices[cube_num * 36 + 35] = cube_num * 8 + 1;
}
void main() {
uint index = gl_GlobalInvocationID.x;
uint output_offset = 1;
uint input_offset = 0;
uint compound_start = 0;
uint nodes = num_nodes(compounds[compound_start]);
// iterate over the compounds and find the work index inside of it
while (index > nodes) {
output_offset += nodes * 9;
input_offset += compounds[compound_start] * compounds[compound_start] * compounds[compound_start];
index -= nodes;
compound_start = compounds[compound_start + 2];
nodes = num_nodes(compounds[compound_start]);
}
uint compound_grid_size = compounds[compound_start];
uint parent_start = 0;
uint cohort_start = 0;
uint cohort_index = index;
uint size = compounds[compound_start];
nodes = 0;
uint add_size = 1;
while (cohort_index >= add_size) {
nodes += add_size;
cohort_index -= add_size;
parent_start = cohort_start;
cohort_start = nodes * 9;
add_size *= 8;
size = size / 2;
}
uint parent = parent_start + ((cohort_index - cohort_index % 8) / 8) * 9;
uint start = cohort_start + 9 * cohort_index;
uint steps = compounds[compound_start] / size;
float compound_scale = uintBitsToFloat(compounds[compound_start + 1]);
vec3 mid_offset = vec3(compound_scale * 0.5, compound_scale * 0.5, compound_scale * 0.5);
uint x = (cohort_index % steps) * size;
uint y = (((cohort_index - (cohort_index % steps)) % (steps * steps)) / (steps)) * size;
uint z = (((cohort_index - (cohort_index % (steps * steps)))) / (steps * steps)) * size;
// plus one size offset, since we want to place the nodes at the far end. This aligns with the iteration directions in the previous shaders
x = x + (size - 1);
y = y + (size - 1);
z = z + (size - 1);
// sum of all elements with coordinates lower than x, y, z
uint contained_entries = grid_size_in[input_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z];
if (z > size) {
// remove contained from z neighbor
contained_entries = contained_entries - grid_size_in[input_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z - size];
}
if (y > size) {
if (z > size) {
// add back the section we will remove twice
contained_entries = contained_entries + int(grid_size_in[input_offset + x * compound_grid_size * compound_grid_size + (y - size) * compound_grid_size + z - size]);
}
// remove contained from y neighbor
contained_entries = contained_entries - int(grid_size_in[input_offset + x * compound_grid_size * compound_grid_size + (y - size) * compound_grid_size + z]);
}
if (x > size) {
if (z > size) {
// add the portion already removed through the z neighbor
contained_entries = contained_entries + grid_size_in[input_offset + (x - size) * compound_grid_size * compound_grid_size + y * compound_grid_size + z - size];
}
if (y > size) {
// add the portion already removed by the y neighbor
contained_entries = contained_entries + grid_size_in[input_offset + (x - size) * compound_grid_size * compound_grid_size + (y - size) * compound_grid_size + z];
if (z > size) {
// remove the portion already added through the z neighbor
contained_entries = contained_entries - grid_size_in[input_offset + (x - size) * compound_grid_size * compound_grid_size + (y - size) * compound_grid_size + z - size];
}
}
// remove contained from x neighbor
contained_entries = contained_entries - grid_size_in[input_offset + (x - size) * compound_grid_size * compound_grid_size + y * compound_grid_size + z];
}
if (contained_entries > 0) {
out_memory[output_offset + cohort_start + cohort_index * 9 + 0] = parent * uint(size != 64);
if (size > 2) {
// add child node reference
uint cohort_end = cohort_start + 9 * add_size;
out_memory[output_offset + cohort_start + cohort_index * 9 + 1] = cohort_end + cohort_index * 9 + 9 * 0; // xyz
out_memory[output_offset + cohort_start + cohort_index * 9 + 2] = cohort_end + cohort_index * 9 + 9 * 1; // Xyz
out_memory[output_offset + cohort_start + cohort_index * 9 + 3] = cohort_end + cohort_index * 9 + 9 * 2; // xYz
out_memory[output_offset + cohort_start + cohort_index * 9 + 4] = cohort_end + cohort_index * 9 + 9 * 3; // XYz
out_memory[output_offset + cohort_start + cohort_index * 9 + 5] = cohort_end + cohort_index * 9 + 9 * 4; // xyZ
out_memory[output_offset + cohort_start + cohort_index * 9 + 6] = cohort_end + cohort_index * 9 + 9 * 5; // XyZ
out_memory[output_offset + cohort_start + cohort_index * 9 + 7] = cohort_end + cohort_index * 9 + 9 * 6; // xYZ
out_memory[output_offset + cohort_start + cohort_index * 9 + 8] = cohort_end + cohort_index * 9 + 9 * 7; // XYZ
} else {
// copy color values and add cubes to rendering
out_memory[output_offset + cohort_start + cohort_index * 9 + 1] = grid_in[input_offset + (x - 1) * compound_grid_size * compound_grid_size + (y - 1) * compound_grid_size + (z - 1)]; // xyz
out_memory[output_offset + cohort_start + cohort_index * 9 + 2] = grid_in[input_offset + (x - 0) * compound_grid_size * compound_grid_size + (y - 1) * compound_grid_size + (z - 1)]; // Xyz
out_memory[output_offset + cohort_start + cohort_index * 9 + 3] = grid_in[input_offset + (x - 1) * compound_grid_size * compound_grid_size + (y - 0) * compound_grid_size + (z - 1)]; // xYz
out_memory[output_offset + cohort_start + cohort_index * 9 + 4] = grid_in[input_offset + (x - 0) * compound_grid_size * compound_grid_size + (y - 0) * compound_grid_size + (z - 1)]; // XYz
out_memory[output_offset + cohort_start + cohort_index * 9 + 5] = grid_in[input_offset + (x - 1) * compound_grid_size * compound_grid_size + (y - 1) * compound_grid_size + (z - 0)]; // xyZ
out_memory[output_offset + cohort_start + cohort_index * 9 + 6] = grid_in[input_offset + (x - 0) * compound_grid_size * compound_grid_size + (y - 1) * compound_grid_size + (z - 0)]; // XyZ
out_memory[output_offset + cohort_start + cohort_index * 9 + 7] = grid_in[input_offset + (x - 1) * compound_grid_size * compound_grid_size + (y - 0) * compound_grid_size + (z - 0)]; // xYZ
out_memory[output_offset + cohort_start + cohort_index * 9 + 8] = grid_in[input_offset + (x - 0) * compound_grid_size * compound_grid_size + (y - 0) * compound_grid_size + (z - 0)]; // XYZ
vec3 compound_pos = vec3(uintBitsToFloat(compounds[compound_start + 5]), uintBitsToFloat(compounds[compound_start + 6]), uintBitsToFloat(compounds[compound_start + 7]));
vec3 check_pos = compound_pos + vec3(float(x) * compound_scale, float(y) * compound_scale, float(z) * compound_scale) + mid_offset;
if (out_memory[output_offset + cohort_start + cohort_index * 9 + 1] != 0) {
add_cube(input_offset + (z - 1) * compound_grid_size * compound_grid_size + (y - 1) * compound_grid_size + (x - 1), compound_scale, check_pos - vec3(1.0, 1.0, 1.0) * compound_scale, unpack_color(out_memory[output_offset + cohort_start + cohort_index * 9 + 1]));
}
if (out_memory[output_offset + cohort_start + cohort_index * 9 + 2] != 0) {
add_cube(input_offset + (z - 1) * compound_grid_size * compound_grid_size + (y - 1) * compound_grid_size + (x - 0), compound_scale, check_pos - vec3(0.0, 1.0, 1.0) * compound_scale, unpack_color(out_memory[output_offset + cohort_start + cohort_index * 9 + 2]));
}
if (out_memory[output_offset + cohort_start + cohort_index * 9 + 3] != 0) {
add_cube(input_offset + (z - 1) * compound_grid_size * compound_grid_size + (y - 0) * compound_grid_size + (x - 1), compound_scale, check_pos - vec3(1.0, 0.0, 1.0) * compound_scale, unpack_color(out_memory[output_offset + cohort_start + cohort_index * 9 + 3]));
}
if (out_memory[output_offset + cohort_start + cohort_index * 9 + 4] != 0) {
add_cube(input_offset + (z - 1) * compound_grid_size * compound_grid_size + (y - 0) * compound_grid_size + (x - 0), compound_scale, check_pos - vec3(0.0, 0.0, 1.0) * compound_scale, unpack_color(out_memory[output_offset + cohort_start + cohort_index * 9 + 4]));
}
if (out_memory[output_offset + cohort_start + cohort_index * 9 + 5] != 0) {
add_cube(input_offset + (z - 0) * compound_grid_size * compound_grid_size + (y - 1) * compound_grid_size + (x - 1), compound_scale, check_pos - vec3(1.0, 1.0, 0.0) * compound_scale, unpack_color(out_memory[output_offset + cohort_start + cohort_index * 9 + 5]));
}
if (out_memory[output_offset + cohort_start + cohort_index * 9 + 6] != 0) {
add_cube(input_offset + (z - 0) * compound_grid_size * compound_grid_size + (y - 1) * compound_grid_size + (x - 0), compound_scale, check_pos - vec3(0.0, 1.0, 0.0) * compound_scale, unpack_color(out_memory[output_offset + cohort_start + cohort_index * 9 + 6]));
}
if (out_memory[output_offset + cohort_start + cohort_index * 9 + 7] != 0) {
add_cube(input_offset + (z - 0) * compound_grid_size * compound_grid_size + (y - 0) * compound_grid_size + (x - 1), compound_scale, check_pos - vec3(1.0, 0.0, 0.0) * compound_scale, unpack_color(out_memory[output_offset + cohort_start + cohort_index * 9 + 7]));
}
if (out_memory[output_offset + cohort_start + cohort_index * 9 + 8] != 0) {
add_cube(input_offset + (z - 0) * compound_grid_size * compound_grid_size + (y - 0) * compound_grid_size + (x - 0), compound_scale, check_pos - vec3(0.0, 0.0, 0.0) * compound_scale, unpack_color(out_memory[output_offset + cohort_start + cohort_index * 9 + 8]));
}
}
} else {
out_memory[output_offset + cohort_start + cohort_index * 9 + 0] = 0;
out_memory[output_offset + cohort_start + cohort_index * 9 + 1] = 0;
out_memory[output_offset + cohort_start + cohort_index * 9 + 2] = 0;
out_memory[output_offset + cohort_start + cohort_index * 9 + 3] = 0;
out_memory[output_offset + cohort_start + cohort_index * 9 + 4] = 0;
out_memory[output_offset + cohort_start + cohort_index * 9 + 5] = 0;
out_memory[output_offset + cohort_start + cohort_index * 9 + 6] = 0;
out_memory[output_offset + cohort_start + cohort_index * 9 + 7] = 0;
out_memory[output_offset + cohort_start + cohort_index * 9 + 8] = 0;
}
}

View file

@ -349,7 +349,7 @@ void main() {
if (render) {
grid[output_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z] = color_int;
transparent_grid[output_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z] = transparent;
add_cube(output_offset + index * compound_grid_size + z, compound_scale, check_pos, color);
//add_cube(output_offset + index * compound_grid_size + z, compound_scale, check_pos, color);
} else {
grid[output_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z] = 0;
transparent_grid[output_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z] = false;

View file

@ -27,7 +27,7 @@ pub struct AppData {
pub pipeline_compute_grow_one: vk::Pipeline,
pub pipeline_compute_grow_two: vk::Pipeline,
pub pipeline_compute_grow_three: vk::Pipeline,
pub pipeline_compute_combine: vk::Pipeline,
pub pipeline_compute_mempos: vk::Pipeline,
pub framebuffers: Vec<vk::Framebuffer>,
pub command_pool: vk::CommandPool,
@ -60,6 +60,9 @@ pub struct AppData {
pub compute_out_storage_buffers_size_three: Vec<vk::Buffer>,
pub compute_out_storage_buffers_memory_size_three: Vec<vk::DeviceMemory>,
pub compute_out_storage_buffers_oct_tree: Vec<vk::Buffer>,
pub compute_out_storage_buffers_memory_oct_tree: Vec<vk::DeviceMemory>,
pub compute_out_cuboid_buffers: Vec<vk::Buffer>,
pub compute_out_cuboid_buffers_memory: Vec<vk::DeviceMemory>,
@ -92,6 +95,8 @@ pub struct AppData {
pub compute_task_one_size: usize,
pub compute_task_one_out_buffer_size: u64,
pub compute_task_one_out_size: u64,
pub compute_task_oct_tree_size: u64,
pub compute_task_oct_tree_nodes: u64,
// values passed to shader
pub num_lights_per_volume: u32,
pub min_light_weight: f32,

View file

@ -206,7 +206,7 @@ pub unsafe fn create_descriptor_set_layout(
.binding(2)
.descriptor_type(vk::DescriptorType::STORAGE_BUFFER)
.descriptor_count(1)
.stage_flags(vk::ShaderStageFlags::FRAGMENT);
.stage_flags(vk::ShaderStageFlags::FRAGMENT | vk::ShaderStageFlags::COMPUTE);
let storage_binding_compute_in = vk::DescriptorSetLayoutBinding::builder()
.binding(3)
@ -250,7 +250,13 @@ pub unsafe fn create_descriptor_set_layout(
.descriptor_count(1)
.stage_flags(vk::ShaderStageFlags::FRAGMENT | vk::ShaderStageFlags::COMPUTE);
let bindings = &[ubo_binding, sampler_binding, storage_binding_render, storage_binding_compute_in, storage_binding_compute_out_color, storage_binding_compute_cuboid_out, storage_binding_compute_cuboid_index_out, storage_binding_compute_out_size_two, storage_binding_compute_out_size_three, storage_binding_compute_out_size_transparent];
let storage_binding_compute_out_oct_tree = vk::DescriptorSetLayoutBinding::builder()
.binding(10)
.descriptor_type(vk::DescriptorType::STORAGE_BUFFER)
.descriptor_count(1)
.stage_flags(vk::ShaderStageFlags::FRAGMENT | vk::ShaderStageFlags::COMPUTE);
let bindings = &[ubo_binding, sampler_binding, storage_binding_render, storage_binding_compute_in, storage_binding_compute_out_color, storage_binding_compute_cuboid_out, storage_binding_compute_cuboid_index_out, storage_binding_compute_out_size_two, storage_binding_compute_out_size_three, storage_binding_compute_out_size_transparent, storage_binding_compute_out_oct_tree];
let info = vk::DescriptorSetLayoutCreateInfo::builder()
.bindings(bindings);
@ -311,6 +317,9 @@ pub unsafe fn create_storage_buffers(
data.compute_out_cuboid_index_buffers.clear();
data.compute_out_cuboid_index_buffers_memory.clear();
data.compute_out_storage_buffers_oct_tree.clear();
data.compute_out_storage_buffers_memory_oct_tree.clear();
for _ in 0..data.swapchain_images.len() {
let (storage_buffer, storage_buffer_memory) = create_buffer(
instance,
@ -363,7 +372,7 @@ pub unsafe fn create_storage_buffers(
instance,
device,
data,
(size_of::<u32>() * 2) as u64 * data.compute_task_one_out_buffer_size.max(1),
(size_of::<u32>()) as u64 * data.compute_task_one_out_buffer_size.max(1),
vk::BufferUsageFlags::STORAGE_BUFFER,
vk::MemoryPropertyFlags::DEVICE_LOCAL,
)?;
@ -375,7 +384,7 @@ pub unsafe fn create_storage_buffers(
instance,
device,
data,
(size_of::<u32>() * 3) as u64 * data.compute_task_one_out_buffer_size.max(1),
(size_of::<u32>()) as u64 * data.compute_task_one_out_buffer_size.max(1),
vk::BufferUsageFlags::STORAGE_BUFFER,
vk::MemoryPropertyFlags::DEVICE_LOCAL,
)?;
@ -383,6 +392,18 @@ pub unsafe fn create_storage_buffers(
data.compute_out_storage_buffers_size_three.push(storage_buffer);
data.compute_out_storage_buffers_memory_size_three.push(storage_buffer_memory);
let (storage_buffer, storage_buffer_memory) = create_buffer(
instance,
device,
data,
(size_of::<u32>()) as u64 * data.compute_task_oct_tree_size.max(1),
vk::BufferUsageFlags::STORAGE_BUFFER,
vk::MemoryPropertyFlags::DEVICE_LOCAL,
)?;
data.compute_out_storage_buffers_oct_tree.push(storage_buffer);
data.compute_out_storage_buffers_memory_oct_tree.push(storage_buffer_memory);
let (storage_buffer, storage_buffer_memory) = create_buffer(
instance,
device,
@ -551,8 +572,12 @@ pub unsafe fn create_descriptor_pool(device: &Device, data: &mut app_data::AppDa
let compute_out_storage_transparent_size = vk::DescriptorPoolSize::builder()
.type_(vk::DescriptorType::STORAGE_BUFFER)
.descriptor_count(data.swapchain_images.len() as u32);
let compute_out_storage_oct_tree = vk::DescriptorPoolSize::builder()
.type_(vk::DescriptorType::STORAGE_BUFFER)
.descriptor_count(data.swapchain_images.len() as u32);
let pool_sizes = &[ubo_size, sampler_size, render_storage_size, compute_in_storage_size, compute_out_storage_color_size, compute_out_cuboid_size, compute_out_cuboid_index_size, compute_out_storage_size_two_size, compute_out_storage_size_three_size, compute_out_storage_transparent_size];
let pool_sizes = &[ubo_size, sampler_size, render_storage_size, compute_in_storage_size, compute_out_storage_color_size, compute_out_cuboid_size, compute_out_cuboid_index_size, compute_out_storage_size_two_size, compute_out_storage_size_three_size, compute_out_storage_transparent_size, compute_out_storage_oct_tree];
let info = vk::DescriptorPoolCreateInfo::builder()
.pool_sizes(pool_sizes)
.max_sets(data.swapchain_images.len() as u32);
@ -625,7 +650,7 @@ pub unsafe fn create_descriptor_sets(device: &Device, data: &mut app_data::AppDa
let info = vk::DescriptorBufferInfo::builder()
.buffer(data.compute_out_storage_buffers_color[i])
.offset(0)
.range((size_of::<u32>() * 3) as u64 * data.compute_task_one_out_buffer_size.max(1));
.range((size_of::<u32>()) as u64 * data.compute_task_one_out_buffer_size.max(1));
let storage_info = &[info];
let storage_write_compute_out_color = vk::WriteDescriptorSet::builder()
@ -638,7 +663,7 @@ pub unsafe fn create_descriptor_sets(device: &Device, data: &mut app_data::AppDa
let info = vk::DescriptorBufferInfo::builder()
.buffer(data.compute_out_storage_buffers_size_two[i])
.offset(0)
.range((size_of::<u32>() * 2) as u64 * data.compute_task_one_out_buffer_size.max(1));
.range((size_of::<u32>()) as u64 * data.compute_task_one_out_buffer_size.max(1));
let storage_info = &[info];
let storage_write_compute_out_size_two = vk::WriteDescriptorSet::builder()
@ -651,7 +676,7 @@ pub unsafe fn create_descriptor_sets(device: &Device, data: &mut app_data::AppDa
let info = vk::DescriptorBufferInfo::builder()
.buffer(data.compute_out_storage_buffers_size_three[i])
.offset(0)
.range((size_of::<u32>() * 3) as u64 * data.compute_task_one_out_buffer_size.max(1));
.range((size_of::<u32>()) as u64 * data.compute_task_one_out_buffer_size.max(1));
let storage_info = &[info];
let storage_write_compute_out_size_three = vk::WriteDescriptorSet::builder()
@ -664,7 +689,7 @@ pub unsafe fn create_descriptor_sets(device: &Device, data: &mut app_data::AppDa
let info = vk::DescriptorBufferInfo::builder()
.buffer(data.compute_out_storage_buffers_transparent[i])
.offset(0)
.range((size_of::<bool>() * 3) as u64 * data.compute_task_one_out_buffer_size.max(1));
.range((size_of::<bool>()) as u64 * data.compute_task_one_out_buffer_size.max(1));
let storage_info = &[info];
let storage_write_compute_out_transparent = vk::WriteDescriptorSet::builder()
@ -674,6 +699,19 @@ pub unsafe fn create_descriptor_sets(device: &Device, data: &mut app_data::AppDa
.descriptor_type(vk::DescriptorType::STORAGE_BUFFER)
.buffer_info(storage_info);
let info = vk::DescriptorBufferInfo::builder()
.buffer(data.compute_out_storage_buffers_oct_tree[i])
.offset(0)
.range((size_of::<u32>()) as u64 * data.compute_task_oct_tree_size.max(1));
let storage_info = &[info];
let storage_write_compute_out_oct_tree = vk::WriteDescriptorSet::builder()
.dst_set(data.descriptor_sets[i])
.dst_binding(10)
.dst_array_element(0)
.descriptor_type(vk::DescriptorType::STORAGE_BUFFER)
.buffer_info(storage_info);
let info = vk::DescriptorBufferInfo::builder()
.buffer(data.compute_out_cuboid_buffers[i])
.offset(0)
@ -702,7 +740,7 @@ pub unsafe fn create_descriptor_sets(device: &Device, data: &mut app_data::AppDa
device.update_descriptor_sets(
&[ubo_write, sampler_write, storage_write_render, storage_write_compute_in, storage_write_compute_out_color, storage_write_compute_cuboid_out, storage_write_compute_cuboid_index_out, storage_write_compute_out_size_two, storage_write_compute_out_size_three, storage_write_compute_out_transparent],
&[ubo_write, sampler_write, storage_write_render, storage_write_compute_in, storage_write_compute_out_color, storage_write_compute_cuboid_out, storage_write_compute_cuboid_index_out, storage_write_compute_out_size_two, storage_write_compute_out_size_three, storage_write_compute_out_transparent, storage_write_compute_out_oct_tree],
&[] as &[vk::CopyDescriptorSet],
);
}

View file

@ -156,6 +156,13 @@ pub unsafe fn create_command_buffers(device: &Device, data: &mut app_data::AppDa
&[]);
device.cmd_dispatch(*command_buffer, (data.compute_task_one_size as f64 / 16.0).ceil() as u32, 1, 1);
let buffer_memory_barrier_in = vk::BufferMemoryBarrier::builder()
.buffer(data.compute_out_storage_buffers_size_three[i])
.src_access_mask(vk::AccessFlags::SHADER_READ)
.dst_access_mask(vk::AccessFlags::SHADER_WRITE)
.size(vk::WHOLE_SIZE as u64)
.build();
let buffer_memory_barrier_out = vk::BufferMemoryBarrier::builder()
.buffer(data.compute_out_storage_buffers_size_two[i])
@ -169,7 +176,7 @@ pub unsafe fn create_command_buffers(device: &Device, data: &mut app_data::AppDa
vk::PipelineStageFlags::COMPUTE_SHADER,
vk::DependencyFlags::DEVICE_GROUP,
&[] as &[vk::MemoryBarrier],
&[buffer_memory_barrier_out],
&[buffer_memory_barrier_in, buffer_memory_barrier_out],
&[] as &[vk::ImageMemoryBarrier]);
// grow z axis
@ -185,6 +192,13 @@ pub unsafe fn create_command_buffers(device: &Device, data: &mut app_data::AppDa
&[]);
device.cmd_dispatch(*command_buffer, (data.compute_task_one_size as f64 / 16.0).ceil() as u32, 1, 1);
let buffer_memory_barrier_in = vk::BufferMemoryBarrier::builder()
.buffer(data.compute_out_storage_buffers_size_two[i])
.src_access_mask(vk::AccessFlags::SHADER_READ)
.dst_access_mask(vk::AccessFlags::SHADER_WRITE)
.size(vk::WHOLE_SIZE as u64)
.build();
let buffer_memory_barrier_out = vk::BufferMemoryBarrier::builder()
.buffer(data.compute_out_storage_buffers_size_three[i])
@ -198,12 +212,12 @@ pub unsafe fn create_command_buffers(device: &Device, data: &mut app_data::AppDa
vk::PipelineStageFlags::COMPUTE_SHADER,
vk::DependencyFlags::DEVICE_GROUP,
&[] as &[vk::MemoryBarrier],
&[buffer_memory_barrier_out],
&[buffer_memory_barrier_in, buffer_memory_barrier_out],
&[] as &[vk::ImageMemoryBarrier]);
// combine element
// calculate mem size
device.cmd_bind_pipeline(
*command_buffer, vk::PipelineBindPoint::COMPUTE, data.pipeline_compute_combine);
*command_buffer, vk::PipelineBindPoint::COMPUTE, data.pipeline_compute_mempos);
device.cmd_bind_descriptor_sets(
*command_buffer,
@ -213,10 +227,17 @@ pub unsafe fn create_command_buffers(device: &Device, data: &mut app_data::AppDa
&[data.descriptor_sets[i]],
&[]);
device.cmd_dispatch(*command_buffer, (data.compute_task_one_size as f64 / 16.0).ceil() as u32, 1, 1);
device.cmd_dispatch(*command_buffer, data.compute_task_oct_tree_nodes as u32, 1, 1);
let buffer_memory_barrier_in = vk::BufferMemoryBarrier::builder()
.buffer(data.compute_out_storage_buffers_size_three[i])
.src_access_mask(vk::AccessFlags::SHADER_READ)
.dst_access_mask(vk::AccessFlags::SHADER_WRITE)
.size(vk::WHOLE_SIZE as u64)
.build();
let buffer_memory_barrier_out = vk::BufferMemoryBarrier::builder()
.buffer(data.render_storage_buffers[i])
.buffer(data.compute_out_storage_buffers_size_two[i])
.src_access_mask(vk::AccessFlags::SHADER_WRITE)
.dst_access_mask(vk::AccessFlags::SHADER_READ)
.size(vk::WHOLE_SIZE as u64)
@ -224,10 +245,10 @@ pub unsafe fn create_command_buffers(device: &Device, data: &mut app_data::AppDa
device.cmd_pipeline_barrier(*command_buffer,
vk::PipelineStageFlags::COMPUTE_SHADER,
vk::PipelineStageFlags::FRAGMENT_SHADER,
vk::PipelineStageFlags::COMPUTE_SHADER,
vk::DependencyFlags::DEVICE_GROUP,
&[] as &[vk::MemoryBarrier],
&[buffer_memory_barrier_out],
&[buffer_memory_barrier_in, buffer_memory_barrier_out],
&[] as &[vk::ImageMemoryBarrier]);
}
// start render pass

View file

@ -441,13 +441,20 @@ impl App {
.iter()
.for_each(|m| self.device.free_memory(*m, None));
self.data.compute_out_storage_buffers_size_three
self.data.compute_out_storage_buffers_size_three
.iter()
.for_each(|b| self.device.destroy_buffer(*b, None));
self.data.compute_out_storage_buffers_memory_size_three
.iter()
.for_each(|m| self.device.free_memory(*m, None));
self.data.compute_out_storage_buffers_oct_tree
.iter()
.for_each(|b| self.device.destroy_buffer(*b, None));
self.data.compute_out_storage_buffers_memory_oct_tree
.iter()
.for_each(|m| self.device.free_memory(*m, None));
self.data.compute_out_cuboid_buffers
.iter()
.for_each(|b| self.device.destroy_buffer(*b, None));
@ -474,7 +481,7 @@ impl App {
self.device.destroy_pipeline(self.data.pipeline_compute_grow_one, None);
self.device.destroy_pipeline(self.data.pipeline_compute_grow_two, None);
self.device.destroy_pipeline(self.data.pipeline_compute_grow_three, None);
self.device.destroy_pipeline(self.data.pipeline_compute_combine, None);
self.device.destroy_pipeline(self.data.pipeline_compute_mempos, None);
self.device.destroy_pipeline_layout(self.data.pipeline_layout, None);
self.device.destroy_render_pass(self.data.render_pass, None);
@ -897,13 +904,13 @@ unsafe fn create_pipeline(device: &Device, data: &mut app_data::AppData) -> Resu
.name(b"main\0");
// load the byte data
let compute_bytes = include_bytes!("../shaders/compiled/rt_compute_combine.spv");
let compute_bytes = include_bytes!("../shaders/compiled/rt_compute_mempos.spv");
// create the shaders
let compute_shader_module_combine = create_shader_module(device, &compute_bytes[..])?;
let compute_shader_module_mempos = create_shader_module(device, &compute_bytes[..])?;
//create the shader stage for the compute shader
let compute_stage_combine = vk::PipelineShaderStageCreateInfo::builder()
let compute_stage_mempos = vk::PipelineShaderStageCreateInfo::builder()
.stage(vk::ShaderStageFlags::COMPUTE)
.module(compute_shader_module_combine)
.module(compute_shader_module_mempos)
.name(b"main\0");
// define input assembly and object type. This is altered when using geometry shader
@ -1062,11 +1069,11 @@ unsafe fn create_pipeline(device: &Device, data: &mut app_data::AppData) -> Resu
.stage(compute_stage_grow_three)
.layout(data.pipeline_layout);
let info_compute_combine = vk::ComputePipelineCreateInfo::builder()
.stage(compute_stage_combine)
let info_compute_mempos = vk::ComputePipelineCreateInfo::builder()
.stage(compute_stage_mempos)
.layout(data.pipeline_layout);
let compute_pipelines = device.create_compute_pipelines(vk::PipelineCache::null(), &[info_compute_rasterize, info_compute_grow_one, info_compute_grow_two, info_compute_grow_three, info_compute_combine], None)?.0;
let compute_pipelines = device.create_compute_pipelines(vk::PipelineCache::null(), &[info_compute_rasterize, info_compute_grow_one, info_compute_grow_two, info_compute_grow_three, info_compute_mempos], None)?.0;
data.pipeline_cube = pipelines[0];
data.pipeline_cuboid = pipelines[1];
@ -1076,7 +1083,7 @@ unsafe fn create_pipeline(device: &Device, data: &mut app_data::AppData) -> Resu
data.pipeline_compute_grow_one = compute_pipelines[1];
data.pipeline_compute_grow_two = compute_pipelines[2];
data.pipeline_compute_grow_three = compute_pipelines[3];
data.pipeline_compute_combine = compute_pipelines[4];
data.pipeline_compute_mempos = compute_pipelines[4];
device.destroy_shader_module(vert_shader_module_cube, None);
device.destroy_shader_module(geo_shader_module_cube, None);
@ -1093,7 +1100,7 @@ unsafe fn create_pipeline(device: &Device, data: &mut app_data::AppData) -> Resu
device.destroy_shader_module(compute_shader_module_grow_one, None);
device.destroy_shader_module(compute_shader_module_grow_two, None);
device.destroy_shader_module(compute_shader_module_grow_three, None);
device.destroy_shader_module(compute_shader_module_combine, None);
device.destroy_shader_module(compute_shader_module_mempos, None);
Ok(())
}

View file

@ -127,12 +127,12 @@ pub fn generate_test_scene(scene: &mut Scene, data: &mut AppData) -> Result<(Poi
let mut comp = ShapeComposition::new(64);
comp.included_shapes.push(Rc::new(RefCell::new(Cone::new(Vector3 { x: 20.0 + grid_size as f32, y: 5.0 + grid_size as f32, z: 10.0 }, Vector3 { x: 0.0, y: 0.0, z: 0.0 }, 0.0, 2.5, Vector3 { x: 0.0, y: 10.0, z: 0.0 },Vector3 { x: 0, y: 255, z: 0 }, 64, false))));
comp.excluded_shapes.push(Rc::new(RefCell::new(Cone::new(Vector3 { x: 20.0 + grid_size as f32, y: 5.0 + grid_size as f32, z: 10.0 }, Vector3 { x: 0.0, y: 0.0, z: 0.0 }, 0.0, 1.5, Vector3 { x: 0.0, y: 10.0, z: 0.0 },Vector3 { x: 0, y: 255, z: 0 }, 64, false))));
scene.volumetrics.push(Rc::new(RefCell::new(comp)));
//scene.volumetrics.push(Rc::new(RefCell::new(comp)));
let mut comp = ShapeComposition::new(64);
comp.included_shapes.push(Rc::new(RefCell::new(Rect::new(Vector3 { x: -5.0 + grid_size as f32, y: 5.0 + grid_size as f32, z: 10.0 }, Vector3 { x: 0.0, y: 0.0, z: 0.0 }, Vector3 { x: 5.0, y: 10.0, z: 2.0 },Vector3 { x: 0, y: 0, z: 255 }, 64, false))));
comp.excluded_shapes.push(Rc::new(RefCell::new(Rect::new(Vector3 { x: -5.0 + grid_size as f32, y: 5.0 + grid_size as f32, z: 10.0 }, Vector3 { x: 0.0, y: 0.0, z: 0.0 }, Vector3 { x: 3.0, y: 8.0, z: 2.0 },Vector3 { x: 0, y: 0, z: 255 }, 64, false))));
scene.volumetrics.push(Rc::new(RefCell::new(comp)));
//scene.volumetrics.push(Rc::new(RefCell::new(comp)));
Ok((cgmath::point3(5.0, 5.0, 10.0)))
}

View file

@ -227,7 +227,12 @@ impl Scene {
let mut compute_task_one_size = 0;
let mut compute_task_one_out_size = 0;
let mut target_index = 1;
let mut node_count = 0;
for compound in &self.volumetrics {
compound.borrow_mut().target_memory_start = target_index;
target_index += compound.borrow().get_target_buffer_mem_size();
node_count += compound.borrow().get_num_nodes();
volumetrics_memory = compound.borrow_mut().insert_into_memory(volumetrics_memory, data, &self);
compute_task_one_size += compound.borrow().size.pow(2) as usize;
compute_task_one_out_size += compound.borrow().size.pow(3) as usize;
@ -238,6 +243,8 @@ impl Scene {
data.compute_task_one_size = compute_task_one_size;
data.compute_task_one_out_buffer_size = (compute_task_one_out_size * 4) as u64;
data.compute_task_one_out_size = compute_task_one_out_size as u64;
data.compute_task_oct_tree_size = target_index as u64;
data.compute_task_oct_tree_nodes = node_count as u64;
}
pub unsafe fn destroy(&mut self, device: &vulkanalia::Device) {

View file

@ -31,6 +31,7 @@ enum ShapeTypes {
#[derive(Clone, Debug)]
pub struct ShapeComposition {
memory_start: usize,
pub target_memory_start: u32,
prev_memory_size: u32,
pub size: u32,
pub included_shapes: Vec<Rc<RefCell<dyn Volumetrics>>>,
@ -40,7 +41,7 @@ pub struct ShapeComposition {
impl ShapeComposition {
pub fn new(size: u32) -> Self {
Self { memory_start: 0, prev_memory_size: 0, size: size, included_shapes: vec![], excluded_shapes: vec![], dirty: true }
Self { memory_start: 0, target_memory_start: 0, prev_memory_size: 0, size: size, included_shapes: vec![], excluded_shapes: vec![], dirty: true }
}
}
@ -142,6 +143,25 @@ impl Memorizable for ShapeComposition {
}
}
impl ShapeComposition {
pub fn get_num_nodes(&self) -> u32 {
let mut nodes = 0;
let mut add_size = 1;
let mut size = self.size;
while size >= 2 {
nodes += add_size;
add_size *= 8;
size /= 2;
}
nodes
}
pub fn get_target_buffer_mem_size(&self) -> u32 {
self.get_num_nodes() * 9
}
}
#[derive(Clone, Debug, PartialEq)]
pub struct Sphere {
pos: Vector3<f32>,