Compare commits

...
Sign in to create a new pull request.

5 commits

Author SHA1 Message Date
zomseffen
68cd58f038 depth ordering volumetrics 2025-06-05 13:45:46 +02:00
zomseffen
fa6495e4cc build shaders with placeholders 2025-06-04 15:50:43 +02:00
zomseffen
8375885a40 volumetric in quad fragf finished for now. 2025-05-28 15:04:58 +02:00
zomseffen
e9e6aec8f8 first working version of volumetric shadows 2025-05-19 11:44:05 +02:00
zomseffen
51760f30f1 adds sparse oct_tree generation in compute 2025-04-28 11:03:19 +02:00
27 changed files with 1914 additions and 273 deletions

View file

@ -2,6 +2,28 @@ use std::process::Command;
use std::io::{self, Write};
use std::path::Path;
use std::fs::File;
use std::io::{BufReader, BufRead, Error};
fn insert_place_holders(path: &str) {
let input = File::open(path).unwrap();
let mut output = File::create(path.replace("_placeholder", "")).unwrap();
let buffered = BufReader::new(input);
for line in buffered.lines() {
let line_str = line.unwrap();
if line_str.contains("#include ") {
let replacer = File::open(format!("shaders/{}", line_str.clone().split_off(9))).expect(format!("could not find the lib file shaders/{}", line_str.clone().split_off(9)).as_str());
let replacement_buffered = BufReader::new(replacer);
for replacement_line in replacement_buffered.lines() {
write!(output, "{}\n", replacement_line.unwrap()).expect("could not write");
}
} else {
write!(output, "{}\n", line_str).expect("could not write");
}
}
}
fn main() {
println!("cargo::rerun-if-changed=shaders/cube.frag");
println!("cargo::rerun-if-changed=shaders/cube.geom");
@ -12,13 +34,17 @@ fn main() {
println!("cargo::rerun-if-changed=shaders/cuboid.vert");
println!("cargo::rerun-if-changed=shaders/rt_quad.vert");
println!("cargo::rerun-if-changed=shaders/rt_quad.frag");
println!("cargo::rerun-if-changed=shaders/rt_lib.frag");
println!("cargo::rerun-if-changed=shaders/rt_quad_placeholder.frag");
println!("cargo::rerun-if-changed=shaders/rt_compute_rasterize.comp");
println!("cargo::rerun-if-changed=shaders/rt_compute_grow_one.comp");
println!("cargo::rerun-if-changed=shaders/rt_compute_grow_two.comp");
println!("cargo::rerun-if-changed=shaders/rt_compute_grow_three.comp");
println!("cargo::rerun-if-changed=shaders/rt_compute_combine.comp");
println!("cargo::rerun-if-changed=shaders/rt_compute_mempos.comp");
// replace placeholders
insert_place_holders("shaders/rt_quad_placeholder.frag");
std::fs::remove_file("shaders/compiled/geo_cube.spv").unwrap_or(());
std::fs::remove_file("shaders/compiled/frag_cube.spv").unwrap_or(());
@ -32,7 +58,7 @@ fn main() {
std::fs::remove_file("shaders/compiled/rt_compute_grow_one.spv").unwrap_or(());
std::fs::remove_file("shaders/compiled/rt_compute_grow_two.spv").unwrap_or(());
std::fs::remove_file("shaders/compiled/rt_compute_grow_three.spv").unwrap_or(());
std::fs::remove_file("shaders/compiled/rt_compute_combine.spv").unwrap_or(());
std::fs::remove_file("shaders/compiled/rt_compute_mempos.spv").unwrap_or(());
if std::env::consts::OS == "windows" {
let mut command = Command::new("./shaders/compile.bat");

View file

@ -13,4 +13,4 @@ C:/VulkanSDK/1.3.280.0/Bin/glslc.exe shaders/rt_compute_rasterize.comp -o shader
C:/VulkanSDK/1.3.280.0/Bin/glslc.exe shaders/rt_compute_grow_one.comp -o shaders/compiled/rt_compute_grow_one.spv
C:/VulkanSDK/1.3.280.0/Bin/glslc.exe shaders/rt_compute_grow_two.comp -o shaders/compiled/rt_compute_grow_two.spv
C:/VulkanSDK/1.3.280.0/Bin/glslc.exe shaders/rt_compute_grow_three.comp -o shaders/compiled/rt_compute_grow_three.spv
C:/VulkanSDK/1.3.280.0/Bin/glslc.exe shaders/rt_compute_combine.comp -o shaders/compiled/rt_compute_combine.spv
C:/VulkanSDK/1.3.280.0/Bin/glslc.exe shaders/rt_compute_mempos.comp -o shaders/compiled/rt_compute_mempos.spv

View file

@ -14,4 +14,4 @@ glslc shaders/rt_compute_rasterize.comp -o shaders/compiled/rt_compute_rasterize
glslc shaders/rt_compute_grow_one.comp -o shaders/compiled/rt_compute_grow_one.spv
glslc shaders/rt_compute_grow_two.comp -o shaders/compiled/rt_compute_grow_two.spv
glslc shaders/rt_compute_grow_three.comp -o shaders/compiled/rt_compute_grow_three.spv
glslc shaders/rt_compute_combine.comp -o shaders/compiled/rt_compute_combine.spv
glslc shaders/rt_compute_mempos.comp -o shaders/compiled/rt_compute_mempos.spv

Binary file not shown.

Binary file not shown.

View file

@ -1,51 +0,0 @@
#version 450
layout(binding = 0) uniform UniformBufferObject {
mat4 model;
mat4 geom_rot;
mat4 view;
mat4 proj;
vec3 camera_pos;
bool[16] use_geom_shader;
} ubo;
layout(binding = 3) readonly buffer CompoundBuffer {
uint compounds[];
};
layout(binding = 4) readonly buffer ColorBuffer {
uint grid_in[];
};
layout(binding = 9) readonly buffer TransparentBuffer {
bool transparent_grid[];
};
layout(binding = 8) buffer SizeBuffer3D {
uint grid_size_in[];
};
layout (local_size_x = 16, local_size_y = 1, local_size_z = 1) in;
void main() {
uint index = gl_GlobalInvocationID.x;
uint output_offset = 0;
uint compound_start = 0;
// iterate over the compounds and find the work index inside of it
while (index > compounds[compound_start] * compounds[compound_start]) {
output_offset += compounds[compound_start] * compounds[compound_start] * compounds[compound_start] * 2;
index -= compounds[compound_start] * compounds[compound_start];
compound_start = compounds[compound_start + 2];
}
// grid pos in the task
uint compound_grid_size = compounds[compound_start];
float compound_scale = uintBitsToFloat(compounds[compound_start + 1]);
vec3 mid_offset = vec3(compound_scale * 0.5, compound_scale * 0.5, compound_scale * 0.5);
uint x = index % compound_grid_size;
uint y = ((index) % (compound_grid_size * compound_grid_size) - x) / (compound_grid_size);
uint z = (index - x - y * compound_grid_size) / (compound_grid_size * compound_grid_size);
uint size_x = grid_size_in[output_offset + (x * compound_grid_size * compound_grid_size + y * compound_grid_size + z) * 3];
uint size_y = grid_size_in[output_offset + (x * compound_grid_size * compound_grid_size + y * compound_grid_size + z) * 3 + 1];
uint size_z = grid_size_in[output_offset + (x * compound_grid_size * compound_grid_size + y * compound_grid_size + z) * 3 + 2];
}

View file

@ -30,7 +30,7 @@ layout (local_size_x = 16, local_size_y = 1, local_size_z = 1) in;
void main() {
uint index = gl_GlobalInvocationID.x;
uint output_offset = 0;
uint compound_start = 0;
uint compound_start = 1;
// iterate over the compounds and find the work index inside of it
while (index > compounds[compound_start] * compounds[compound_start]) {
output_offset += compounds[compound_start] * compounds[compound_start] * compounds[compound_start];
@ -43,40 +43,11 @@ void main() {
vec3 mid_offset = vec3(compound_scale * 0.5, compound_scale * 0.5, compound_scale * 0.5);
uint y = index % compound_grid_size;
uint z = (index - y) / compound_grid_size;
vec3 compound_pos = vec3(uintBitsToFloat(compounds[compound_start + 5]), uintBitsToFloat(compounds[compound_start + 6]), uintBitsToFloat(compounds[compound_start + 7]));
// iterate upwards along the x axis
bool seen_empty = false;
uint start = 0;
uint last_col = 0;
uint sum = 0;
for (uint x=0; x < compound_grid_size; x++) {
uint color_val = grid_in[output_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z];
bool transparent = transparent_grid[output_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z];
grid_out[output_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z] = 0;
// check if we need to stop a volume
if (color_val != 0 && !transparent) {
// check if we are in a volume right now
if (seen_empty) {
// close the current volume
grid_out[output_offset + start * compound_grid_size * compound_grid_size + y * compound_grid_size + z] = x - start;
seen_empty = false;
last_col = 0;
}
} else {
// check if transparency changed
if (seen_empty && transparent && last_col != color_val) {
// if we switch colors close the current volume and prepare for a new one
grid_out[output_offset + start * compound_grid_size * compound_grid_size + y * compound_grid_size + z] = x - start;
seen_empty = false;
}
// start a new volume if we are not in one right now
if (!seen_empty) {
seen_empty = true;
start = x;
last_col = color_val;
}
}
}
if (seen_empty) {
grid_out[output_offset + start * compound_grid_size * compound_grid_size + y * compound_grid_size + z] = compound_grid_size - start;
sum += uint(color_val != 0);
grid_out[output_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z] = sum;
}
}

View file

@ -32,12 +32,12 @@ layout(binding = 8) buffer SizeBuffer3D {
layout (local_size_x = 16, local_size_y = 1, local_size_z = 1) in;
void main() {
uint index = gl_GlobalInvocationID.x;
uint index = gl_GlobalInvocationID.x * 2 + 1;
uint output_offset = 0;
uint compound_start = 0;
uint compound_start = 1;
// iterate over the compounds and find the work index inside of it
while (index > compounds[compound_start] * compounds[compound_start]) {
output_offset += compounds[compound_start] * compounds[compound_start] * compounds[compound_start] * 2;
output_offset += compounds[compound_start] * compounds[compound_start] * compounds[compound_start];
index -= compounds[compound_start] * compounds[compound_start];
compound_start = compounds[compound_start + 2];
}
@ -47,55 +47,10 @@ void main() {
vec3 mid_offset = vec3(compound_scale * 0.5, compound_scale * 0.5, compound_scale * 0.5);
uint x = index % compound_grid_size;
uint y = (index - x) / compound_grid_size;
vec3 compound_pos = vec3(uintBitsToFloat(compounds[compound_start + 5]), uintBitsToFloat(compounds[compound_start + 6]), uintBitsToFloat(compounds[compound_start + 7]));
// iterate upwards along the x axis
bool seen_empty = false;
uint start = 0;
uint start_x_size = 0;
uint start_y_size = 0;
uint last_col = 0;
// iterate upwards along the z axis
uint sum = 0;
for (uint z=0; z < compound_grid_size; z++) {
uint color_val = grid_in[output_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z];
bool transparent = transparent_grid[output_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z];
uint current_x_size = grid_size_in[output_offset + (x * compound_grid_size * compound_grid_size + y * compound_grid_size + z) * 2];
uint current_y_size = grid_size_in[output_offset + (x * compound_grid_size * compound_grid_size + y * compound_grid_size + z) * 2 + 1];
grid_out[output_offset + (x * compound_grid_size * compound_grid_size + y * compound_grid_size + z) * 3] = 0;
grid_out[output_offset + (x * compound_grid_size * compound_grid_size + y * compound_grid_size + z) * 3 + 1] = 0;
grid_out[output_offset + (x * compound_grid_size * compound_grid_size + y * compound_grid_size + z) * 3 + 2] = 0;
// check if we need to stop a volume
if (color_val != 0 && !transparent) {
// check if we are in a volume right now
if (seen_empty) {
// close the current volume
grid_out[output_offset + (x * compound_grid_size * compound_grid_size + y * compound_grid_size + start) * 3] = start_x_size;
grid_out[output_offset + (x * compound_grid_size * compound_grid_size + y * compound_grid_size + start) * 3 + 1] = start_y_size;
grid_out[output_offset + (x * compound_grid_size * compound_grid_size + y * compound_grid_size + start) * 3 + 2] = z - start;
seen_empty = false;
last_col = 0;
}
} else {
// check if transparency changed
if (seen_empty && ((transparent && last_col != color_val) || (start_x_size != current_x_size) || (start_y_size != current_y_size))) {
// if we switch colors or size close the current volume and prepare for a new one
grid_out[output_offset + (x * compound_grid_size * compound_grid_size + y * compound_grid_size + start) * 3] = start_x_size;
grid_out[output_offset + (x * compound_grid_size * compound_grid_size + y * compound_grid_size + start) * 3 + 1] = start_y_size;
grid_out[output_offset + (x * compound_grid_size * compound_grid_size + y * compound_grid_size + start) * 3 + 2] = z - start;
seen_empty = false;
}
// start a new volume if we are not in one right now
if (!seen_empty && current_x_size != 0 && current_y_size != 0) {
seen_empty = true;
start = z;
start_x_size = current_x_size;
start_y_size = current_y_size;
last_col = color_val;
}
}
}
if (seen_empty) {
grid_out[output_offset + (x * compound_grid_size * compound_grid_size + y * compound_grid_size + start) * 3] = start_x_size;
grid_out[output_offset + (x * compound_grid_size * compound_grid_size + y * compound_grid_size + start) * 3 + 1] = start_y_size;
grid_out[output_offset + (x * compound_grid_size * compound_grid_size + y * compound_grid_size + start) * 3 + 2] = compound_grid_size - start;
sum += grid_size_in[output_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z];
grid_out[output_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z] = sum;
}
}

View file

@ -32,12 +32,12 @@ layout(binding = 8) readonly buffer SizeBuffer3D {
layout (local_size_x = 16, local_size_y = 1, local_size_z = 1) in;
void main() {
uint index = gl_GlobalInvocationID.x;
uint index = gl_GlobalInvocationID.x * 2 + 1;
uint output_offset = 0;
uint compound_start = 0;
uint compound_start = 1;
// iterate over the compounds and find the work index inside of it
while (index > compounds[compound_start] * compounds[compound_start]) {
output_offset += compounds[compound_start] * compounds[compound_start] * compounds[compound_start] * 2;
output_offset += compounds[compound_start] * compounds[compound_start] * compounds[compound_start];
index -= compounds[compound_start] * compounds[compound_start];
compound_start = compounds[compound_start + 2];
}
@ -47,48 +47,10 @@ void main() {
vec3 mid_offset = vec3(compound_scale * 0.5, compound_scale * 0.5, compound_scale * 0.5);
uint x = index % compound_grid_size;
uint z = (index - x) / compound_grid_size;
vec3 compound_pos = vec3(uintBitsToFloat(compounds[compound_start + 5]), uintBitsToFloat(compounds[compound_start + 6]), uintBitsToFloat(compounds[compound_start + 7]));
// iterate upwards along the x axis
bool seen_empty = false;
uint start = 0;
uint start_x_size = 0;
uint last_col = 0;
// iterate upwards along the y axis
uint sum = 0;
for (uint y=0; y < compound_grid_size; y++) {
uint color_val = grid_in[output_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z];
bool transparent = transparent_grid[output_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z];
uint current_x_size = grid_size_in[output_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z];
grid_out[output_offset + (x * compound_grid_size * compound_grid_size + y * compound_grid_size + z) * 2] = 0;
grid_out[output_offset + (x * compound_grid_size * compound_grid_size + y * compound_grid_size + z) * 2 + 1] = 0;
// check if we need to stop a volume
if (color_val != 0 && !transparent) {
// check if we are in a volume right now
if (seen_empty) {
// close the current volume
grid_out[output_offset + (x * compound_grid_size * compound_grid_size + start * compound_grid_size + z) * 2] = start_x_size;
grid_out[output_offset + (x * compound_grid_size * compound_grid_size + start * compound_grid_size + z) * 2 + 1] = y - start;
seen_empty = false;
last_col = 0;
}
} else {
// check if transparency changed
if (seen_empty && ((transparent && last_col != color_val) || (start_x_size != current_x_size))) {
// if we switch colors or size close the current volume and prepare for a new one
grid_out[output_offset + (x * compound_grid_size * compound_grid_size + start * compound_grid_size + z) * 2] = start_x_size;
grid_out[output_offset + (x * compound_grid_size * compound_grid_size + start * compound_grid_size + z) * 2 + 1] = y - start;
seen_empty = false;
}
// start a new volume if we are not in one right now
if (!seen_empty && current_x_size != 0) {
seen_empty = true;
start = y;
start_x_size = current_x_size;
last_col = color_val;
}
}
}
if (seen_empty) {
grid_out[output_offset + (x * compound_grid_size * compound_grid_size + start * compound_grid_size + z) * 2] = start_x_size;
grid_out[output_offset + (x * compound_grid_size * compound_grid_size + start * compound_grid_size + z) * 2 + 1] = compound_grid_size - start;
sum += grid_size_in[output_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z];
grid_out[output_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z] = sum;
}
}

View file

@ -0,0 +1,365 @@
#version 450
layout(binding = 0) uniform UniformBufferObject {
mat4 model;
mat4 geom_rot;
mat4 view;
mat4 proj;
vec3 camera_pos;
bool[16] use_geom_shader;
} ubo;
layout(binding = 3) readonly buffer CompoundBuffer {
uint compounds[];
};
layout(binding = 4) readonly buffer ColorBuffer {
uint grid_in[];
};
layout(binding = 9) readonly buffer TransparentBuffer {
bool transparent_grid[];
};
layout(binding = 8) readonly buffer SizeBuffer3D {
uint grid_size_in[];
};
layout(binding = 10) buffer OutMemory {
uint out_memory[];
};
layout(binding = 2) readonly buffer SceneInfoBuffer{
uint infos[];
} scene_info;
uint max_num_lights = scene_info.infos[0];
layout (local_size_x = 16, local_size_y = 1, local_size_z = 1) in;
uint num_nodes(uint size) {
uint nodes = 0;
uint add_size = 1;
while (size >= 2) {
nodes += add_size;
add_size = add_size * 8;
size = size / 2;
}
return nodes;
}
layout(binding = 5) buffer SizedVertices {
float vertices[];
};
layout(binding = 6) buffer Indices {
uint indices[];
};
vec3 unpack_color(uint val) {
// left most 8 bits first
uint val1 = (val >> 24);
uint val2 = (val << 8) >> 24;
uint val3 = (val << 16) >> 24;
uint val4 = (val << 24) >> 24;
return vec3(val4 / 255.0, val3 / 255.0, val2 / 255.0);
}
void add_cube(uint cube_num, float scale, vec3 pos, vec3 color) {
// add node info for the cube
//vertice 0
vertices[(cube_num * 8 + 0) * 11 + 0] = pos.x - 0.5 * scale;
vertices[(cube_num * 8 + 0) * 11 + 1] = pos.y + 0.5 * scale;
vertices[(cube_num * 8 + 0) * 11 + 2] = pos.z + 0.5 * scale;
vertices[(cube_num * 8 + 0) * 11 + 3] = color.x;
vertices[(cube_num * 8 + 0) * 11 + 4] = color.y;
vertices[(cube_num * 8 + 0) * 11 + 5] = color.z;
//vertice 1
vertices[(cube_num * 8 + 1) * 11 + 0] = pos.x + 0.5 * scale;
vertices[(cube_num * 8 + 1) * 11 + 1] = pos.y + 0.5 * scale;
vertices[(cube_num * 8 + 1) * 11 + 2] = pos.z + 0.5 * scale;
vertices[(cube_num * 8 + 1) * 11 + 3] = color.x;
vertices[(cube_num * 8 + 1) * 11 + 4] = color.y;
vertices[(cube_num * 8 + 1) * 11 + 5] = color.z;
//vertice 2
vertices[(cube_num * 8 + 2) * 11 + 0] = pos.x - 0.5 * scale;
vertices[(cube_num * 8 + 2) * 11 + 1] = pos.y - 0.5 * scale;
vertices[(cube_num * 8 + 2) * 11 + 2] = pos.z + 0.5 * scale;
vertices[(cube_num * 8 + 2) * 11 + 3] = color.x;
vertices[(cube_num * 8 + 2) * 11 + 4] = color.y;
vertices[(cube_num * 8 + 2) * 11 + 5] = color.z;
//vertice 3
vertices[(cube_num * 8 + 3) * 11 + 0] = pos.x + 0.5 * scale;
vertices[(cube_num * 8 + 3) * 11 + 1] = pos.y - 0.5 * scale;
vertices[(cube_num * 8 + 3) * 11 + 2] = pos.z + 0.5 * scale;
vertices[(cube_num * 8 + 3) * 11 + 3] = color.x;
vertices[(cube_num * 8 + 3) * 11 + 4] = color.y;
vertices[(cube_num * 8 + 3) * 11 + 5] = color.z;
//vertice 4
vertices[(cube_num * 8 + 4) * 11 + 0] = pos.x - 0.5 * scale;
vertices[(cube_num * 8 + 4) * 11 + 1] = pos.y + 0.5 * scale;
vertices[(cube_num * 8 + 4) * 11 + 2] = pos.z - 0.5 * scale;
vertices[(cube_num * 8 + 4) * 11 + 3] = color.x;
vertices[(cube_num * 8 + 4) * 11 + 4] = color.y;
vertices[(cube_num * 8 + 4) * 11 + 5] = color.z;
//vertice 5
vertices[(cube_num * 8 + 5) * 11 + 0] = pos.x + 0.5 * scale;
vertices[(cube_num * 8 + 5) * 11 + 1] = pos.y + 0.5 * scale;
vertices[(cube_num * 8 + 5) * 11 + 2] = pos.z - 0.5 * scale;
vertices[(cube_num * 8 + 5) * 11 + 3] = color.x;
vertices[(cube_num * 8 + 5) * 11 + 4] = color.y;
vertices[(cube_num * 8 + 5) * 11 + 5] = color.z;
//vertice 6
vertices[(cube_num * 8 + 6) * 11 + 0] = pos.x - 0.5 * scale;
vertices[(cube_num * 8 + 6) * 11 + 1] = pos.y - 0.5 * scale;
vertices[(cube_num * 8 + 6) * 11 + 2] = pos.z - 0.5 * scale;
vertices[(cube_num * 8 + 6) * 11 + 3] = color.x;
vertices[(cube_num * 8 + 6) * 11 + 4] = color.y;
vertices[(cube_num * 8 + 6) * 11 + 5] = color.z;
//vertice 7
vertices[(cube_num * 8 + 7) * 11 + 0] = pos.x + 0.5 * scale;
vertices[(cube_num * 8 + 7) * 11 + 1] = pos.y - 0.5 * scale;
vertices[(cube_num * 8 + 7) * 11 + 2] = pos.z - 0.5 * scale;
vertices[(cube_num * 8 + 7) * 11 + 3] = color.x;
vertices[(cube_num * 8 + 7) * 11 + 4] = color.y;
vertices[(cube_num * 8 + 7) * 11 + 5] = color.z;
//add indices for the cube
//top
indices[cube_num * 36 + 0] = cube_num * 8 + 3;
indices[cube_num * 36 + 1] = cube_num * 8 + 0;
indices[cube_num * 36 + 2] = cube_num * 8 + 2;
indices[cube_num * 36 + 3] = cube_num * 8 + 3;
indices[cube_num * 36 + 4] = cube_num * 8 + 1;
indices[cube_num * 36 + 5] = cube_num * 8 + 0;
//bottom
indices[cube_num * 36 + 6] = cube_num * 8 + 6;
indices[cube_num * 36 + 7] = cube_num * 8 + 4;
indices[cube_num * 36 + 8] = cube_num * 8 + 7;
indices[cube_num * 36 + 9] = cube_num * 8 + 4;
indices[cube_num * 36 + 10] = cube_num * 8 + 5;
indices[cube_num * 36 + 11] = cube_num * 8 + 7;
//left
indices[cube_num * 36 + 12] = cube_num * 8 + 0;
indices[cube_num * 36 + 13] = cube_num * 8 + 4;
indices[cube_num * 36 + 14] = cube_num * 8 + 2;
indices[cube_num * 36 + 15] = cube_num * 8 + 6;
indices[cube_num * 36 + 16] = cube_num * 8 + 2;
indices[cube_num * 36 + 17] = cube_num * 8 + 4;
//right
indices[cube_num * 36 + 18] = cube_num * 8 + 1;
indices[cube_num * 36 + 19] = cube_num * 8 + 3;
indices[cube_num * 36 + 20] = cube_num * 8 + 5;
indices[cube_num * 36 + 21] = cube_num * 8 + 5;
indices[cube_num * 36 + 22] = cube_num * 8 + 3;
indices[cube_num * 36 + 23] = cube_num * 8 + 7;
//near
indices[cube_num * 36 + 24] = cube_num * 8 + 6;
indices[cube_num * 36 + 25] = cube_num * 8 + 3;
indices[cube_num * 36 + 26] = cube_num * 8 + 2;
indices[cube_num * 36 + 27] = cube_num * 8 + 3;
indices[cube_num * 36 + 28] = cube_num * 8 + 6;
indices[cube_num * 36 + 29] = cube_num * 8 + 7;
//far
indices[cube_num * 36 + 30] = cube_num * 8 + 0;
indices[cube_num * 36 + 31] = cube_num * 8 + 1;
indices[cube_num * 36 + 32] = cube_num * 8 + 4;
indices[cube_num * 36 + 33] = cube_num * 8 + 5;
indices[cube_num * 36 + 34] = cube_num * 8 + 4;
indices[cube_num * 36 + 35] = cube_num * 8 + 1;
}
uint cohort_index_from_pos(uint x, uint y, uint z, uint block_size, uint compound_size) {
uint steps = compound_size / block_size;
return (z / block_size) * (steps*steps) + (y / block_size) * steps + (x / block_size);
}
void main() {
uint index = gl_GlobalInvocationID.x;
uint output_offset = 1;
uint input_offset = 0;
uint compound_start = 1;
uint nodes = num_nodes(compounds[compound_start]);
// iterate over the compounds and find the work index inside of it
while (index > nodes) {
input_offset += compounds[compound_start] * compounds[compound_start] * compounds[compound_start];
index -= nodes;
compound_start = compounds[compound_start + 2];
nodes = num_nodes(compounds[compound_start]);
}
output_offset = compounds[compound_start + 8];
uint compound_grid_size = compounds[compound_start];
uint parent_start = 0;
uint cohort_start = 0;
uint cohort_index = index;
uint size = compounds[compound_start];
nodes = 0;
uint add_size = 1;
while (cohort_index >= add_size) {
nodes += add_size;
cohort_index -= add_size;
parent_start = cohort_start;
cohort_start = nodes * 9;
add_size *= 8;
size = size / 2;
}
uint steps = compounds[compound_start] / size;
float compound_scale = uintBitsToFloat(compounds[compound_start + 1]);
vec3 mid_offset = vec3(compound_scale * 0.5, compound_scale * 0.5, compound_scale * 0.5);
uint x_no_offset = (cohort_index % steps) * size;
uint y_no_offset = (((cohort_index - (cohort_index % steps)) % (steps * steps)) / (steps)) * size;
uint z_no_offset = (((cohort_index - (cohort_index % (steps * steps)))) / (steps * steps)) * size;
uint parent_size = size * 2;
uint parent_steps = compounds[compound_start] / parent_size;
uint x_parent = uint(floor(float(x_no_offset) / float(parent_size))) * parent_size;
uint y_parent = uint(floor(float(y_no_offset) / float(parent_size))) * parent_size;
uint z_parent = uint(floor(float(z_no_offset) / float(parent_size))) * parent_size;
uint parent = output_offset + parent_start + cohort_index_from_pos(x_parent, y_parent, z_parent, parent_size, compound_grid_size) * 9;;
if (size == compounds[compound_start]) {
parent = 0;
}
// plus one size offset, since we want to place the nodes at the far end. This aligns with the iteration directions in the previous shaders
uint x = x_no_offset + (size - 1);
uint y = y_no_offset + (size - 1);
uint z = z_no_offset + (size - 1);
// sum of all elements with coordinates lower than x, y, z
uint contained_entries = grid_size_in[input_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z];
if (z > size) {
// remove contained from z neighbor
contained_entries = contained_entries - grid_size_in[input_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z - size];
}
if (y > size) {
if (z > size) {
// add back the section we will remove twice
contained_entries = contained_entries + int(grid_size_in[input_offset + x * compound_grid_size * compound_grid_size + (y - size) * compound_grid_size + z - size]);
}
// remove contained from y neighbor
contained_entries = contained_entries - int(grid_size_in[input_offset + x * compound_grid_size * compound_grid_size + (y - size) * compound_grid_size + z]);
}
if (x > size) {
if (z > size) {
// add the portion already removed through the z neighbor
contained_entries = contained_entries + grid_size_in[input_offset + (x - size) * compound_grid_size * compound_grid_size + y * compound_grid_size + z - size];
}
if (y > size) {
// add the portion already removed by the y neighbor
contained_entries = contained_entries + grid_size_in[input_offset + (x - size) * compound_grid_size * compound_grid_size + (y - size) * compound_grid_size + z];
if (z > size) {
// remove the portion already added through the z neighbor
contained_entries = contained_entries - grid_size_in[input_offset + (x - size) * compound_grid_size * compound_grid_size + (y - size) * compound_grid_size + z - size];
}
}
// remove contained from x neighbor
contained_entries = contained_entries - grid_size_in[input_offset + (x - size) * compound_grid_size * compound_grid_size + y * compound_grid_size + z];
}
if (contained_entries > 0) {
out_memory[output_offset + cohort_start + cohort_index * 9 + 0] = parent;
if (size > 2) {
// add child node reference
uint child_size = size / 2;
uint cohort_end = cohort_start + 9 * add_size;
out_memory[output_offset + cohort_start + cohort_index * 9 + 1] = output_offset + cohort_end + cohort_index_from_pos(x_no_offset, y_no_offset, z_no_offset, child_size, compound_grid_size) * 9; // xyz
out_memory[output_offset + cohort_start + cohort_index * 9 + 2] = output_offset + cohort_end + cohort_index_from_pos(x_no_offset + child_size, y_no_offset, z_no_offset, child_size, compound_grid_size) * 9; // Xyz
out_memory[output_offset + cohort_start + cohort_index * 9 + 3] = output_offset + cohort_end + cohort_index_from_pos(x_no_offset, y_no_offset + child_size, z_no_offset, child_size, compound_grid_size) * 9; // xYz
out_memory[output_offset + cohort_start + cohort_index * 9 + 4] = output_offset + cohort_end + cohort_index_from_pos(x_no_offset + child_size, y_no_offset + child_size, z_no_offset, child_size, compound_grid_size) * 9; // XYz
out_memory[output_offset + cohort_start + cohort_index * 9 + 5] = output_offset + cohort_end + cohort_index_from_pos(x_no_offset, y_no_offset, z_no_offset + child_size, child_size, compound_grid_size) * 9; // xyZ
out_memory[output_offset + cohort_start + cohort_index * 9 + 6] = output_offset + cohort_end + cohort_index_from_pos(x_no_offset + child_size, y_no_offset, z_no_offset + child_size, child_size, compound_grid_size) * 9; // XyZ
out_memory[output_offset + cohort_start + cohort_index * 9 + 7] = output_offset + cohort_end + cohort_index_from_pos(x_no_offset, y_no_offset + child_size, z_no_offset + child_size, child_size, compound_grid_size) * 9; // xYZ
out_memory[output_offset + cohort_start + cohort_index * 9 + 8] = output_offset + cohort_end + cohort_index_from_pos(x_no_offset + child_size, y_no_offset + child_size, z_no_offset + child_size, child_size, compound_grid_size) * 9; // XYZ
} else {
// copy color values and add cubes to rendering
out_memory[output_offset + cohort_start + cohort_index * 9 + 1] = grid_in[input_offset + (x - 1) * compound_grid_size * compound_grid_size + (y - 1) * compound_grid_size + (z - 1)]; // xyz
out_memory[output_offset + cohort_start + cohort_index * 9 + 2] = grid_in[input_offset + (x - 0) * compound_grid_size * compound_grid_size + (y - 1) * compound_grid_size + (z - 1)]; // Xyz
out_memory[output_offset + cohort_start + cohort_index * 9 + 3] = grid_in[input_offset + (x - 1) * compound_grid_size * compound_grid_size + (y - 0) * compound_grid_size + (z - 1)]; // xYz
out_memory[output_offset + cohort_start + cohort_index * 9 + 4] = grid_in[input_offset + (x - 0) * compound_grid_size * compound_grid_size + (y - 0) * compound_grid_size + (z - 1)]; // XYz
out_memory[output_offset + cohort_start + cohort_index * 9 + 5] = grid_in[input_offset + (x - 1) * compound_grid_size * compound_grid_size + (y - 1) * compound_grid_size + (z - 0)]; // xyZ
out_memory[output_offset + cohort_start + cohort_index * 9 + 6] = grid_in[input_offset + (x - 0) * compound_grid_size * compound_grid_size + (y - 1) * compound_grid_size + (z - 0)]; // XyZ
out_memory[output_offset + cohort_start + cohort_index * 9 + 7] = grid_in[input_offset + (x - 1) * compound_grid_size * compound_grid_size + (y - 0) * compound_grid_size + (z - 0)]; // xYZ
out_memory[output_offset + cohort_start + cohort_index * 9 + 8] = grid_in[input_offset + (x - 0) * compound_grid_size * compound_grid_size + (y - 0) * compound_grid_size + (z - 0)]; // XYZ
vec3 compound_pos = vec3(uintBitsToFloat(compounds[compound_start + 5]), uintBitsToFloat(compounds[compound_start + 6]), uintBitsToFloat(compounds[compound_start + 7]));
vec3 check_pos = compound_pos + vec3(float(x) * compound_scale, float(y) * compound_scale, float(z) * compound_scale) + mid_offset;
if (out_memory[output_offset + cohort_start + cohort_index * 9 + 1] != 0) {
add_cube(input_offset + (z - 1) * compound_grid_size * compound_grid_size + (y - 1) * compound_grid_size + (x - 1), compound_scale, check_pos - vec3(1.0, 1.0, 1.0) * compound_scale, unpack_color(out_memory[output_offset + cohort_start + cohort_index * 9 + 1]));
}
if (out_memory[output_offset + cohort_start + cohort_index * 9 + 2] != 0) {
add_cube(input_offset + (z - 1) * compound_grid_size * compound_grid_size + (y - 1) * compound_grid_size + (x - 0), compound_scale, check_pos - vec3(0.0, 1.0, 1.0) * compound_scale, unpack_color(out_memory[output_offset + cohort_start + cohort_index * 9 + 2]));
}
if (out_memory[output_offset + cohort_start + cohort_index * 9 + 3] != 0) {
add_cube(input_offset + (z - 1) * compound_grid_size * compound_grid_size + (y - 0) * compound_grid_size + (x - 1), compound_scale, check_pos - vec3(1.0, 0.0, 1.0) * compound_scale, unpack_color(out_memory[output_offset + cohort_start + cohort_index * 9 + 3]));
}
if (out_memory[output_offset + cohort_start + cohort_index * 9 + 4] != 0) {
add_cube(input_offset + (z - 1) * compound_grid_size * compound_grid_size + (y - 0) * compound_grid_size + (x - 0), compound_scale, check_pos - vec3(0.0, 0.0, 1.0) * compound_scale, unpack_color(out_memory[output_offset + cohort_start + cohort_index * 9 + 4]));
}
if (out_memory[output_offset + cohort_start + cohort_index * 9 + 5] != 0) {
add_cube(input_offset + (z - 0) * compound_grid_size * compound_grid_size + (y - 1) * compound_grid_size + (x - 1), compound_scale, check_pos - vec3(1.0, 1.0, 0.0) * compound_scale, unpack_color(out_memory[output_offset + cohort_start + cohort_index * 9 + 5]));
}
if (out_memory[output_offset + cohort_start + cohort_index * 9 + 6] != 0) {
add_cube(input_offset + (z - 0) * compound_grid_size * compound_grid_size + (y - 1) * compound_grid_size + (x - 0), compound_scale, check_pos - vec3(0.0, 1.0, 0.0) * compound_scale, unpack_color(out_memory[output_offset + cohort_start + cohort_index * 9 + 6]));
}
if (out_memory[output_offset + cohort_start + cohort_index * 9 + 7] != 0) {
add_cube(input_offset + (z - 0) * compound_grid_size * compound_grid_size + (y - 0) * compound_grid_size + (x - 1), compound_scale, check_pos - vec3(1.0, 0.0, 0.0) * compound_scale, unpack_color(out_memory[output_offset + cohort_start + cohort_index * 9 + 7]));
}
if (out_memory[output_offset + cohort_start + cohort_index * 9 + 8] != 0) {
add_cube(input_offset + (z - 0) * compound_grid_size * compound_grid_size + (y - 0) * compound_grid_size + (x - 0), compound_scale, check_pos - vec3(0.0, 0.0, 0.0) * compound_scale, unpack_color(out_memory[output_offset + cohort_start + cohort_index * 9 + 8]));
}
}
} else {
out_memory[output_offset + cohort_start + cohort_index * 9 + 0] = 0;
out_memory[output_offset + cohort_start + cohort_index * 9 + 1] = 0;
out_memory[output_offset + cohort_start + cohort_index * 9 + 2] = 0;
out_memory[output_offset + cohort_start + cohort_index * 9 + 3] = 0;
out_memory[output_offset + cohort_start + cohort_index * 9 + 4] = 0;
out_memory[output_offset + cohort_start + cohort_index * 9 + 5] = 0;
out_memory[output_offset + cohort_start + cohort_index * 9 + 6] = 0;
out_memory[output_offset + cohort_start + cohort_index * 9 + 7] = 0;
out_memory[output_offset + cohort_start + cohort_index * 9 + 8] = 0;
}
}

View file

@ -9,7 +9,7 @@ layout(binding = 0) uniform UniformBufferObject {
bool[16] use_geom_shader;
} ubo;
layout(binding = 3) readonly buffer SceneInfoBuffer {
layout(binding = 3) readonly buffer CompoundBuffer {
uint compounds[];
};
@ -175,7 +175,7 @@ void add_cube(uint cube_num, float scale, vec3 pos, vec3 color) {
void main() {
uint index = gl_GlobalInvocationID.x;
uint output_offset = 0;
uint compound_start = 0;
uint compound_start = 1;
// iterate over the compounds and find the work index inside of it
while (index > compounds[compound_start] * compounds[compound_start]) {
output_offset += compounds[compound_start] * compounds[compound_start] * compounds[compound_start];
@ -349,7 +349,7 @@ void main() {
if (render) {
grid[output_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z] = color_int;
transparent_grid[output_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z] = transparent;
add_cube(output_offset + index * compound_grid_size + z, compound_scale, check_pos, color);
//add_cube(output_offset + index * compound_grid_size + z, compound_scale, check_pos, color);
} else {
grid[output_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z] = 0;
transparent_grid[output_offset + x * compound_grid_size * compound_grid_size + y * compound_grid_size + z] = false;

855
shaders/rt_lib.frag Normal file
View file

@ -0,0 +1,855 @@
layout(binding = 0) uniform UniformBufferObject {
mat4 model;
mat4 geom_rot;
mat4 view;
mat4 proj;
vec3 camera_pos;
bool[16] use_geom_shader;
} ubo;
// 0 - location for the maximum number of lights referenced per chunk (also will be the invalid memory allocation for pointing to a nonexistant neighbor)
// 1 - location for the max iterations per light
// 2 - diffuse raster samples (2*n + 1) * (2*n + 1) so as to always have at least the central fragment covered
// 3 - diffuse raster size (float, needs to be decoded)
// 4 - max recursive rays
// 5 - diffuse rays per hit
// 6 - maximum number of compounds per light
layout(binding = 2) readonly buffer SceneInfoBuffer{
uint infos[];
} scene_info;
layout(binding = 3) readonly buffer CompoundBuffer {
uint compounds[];
};
layout(binding = 10) readonly buffer OctTreeMemory {
uint oct_tree_mem[];
};
uint max_num_lights = scene_info.infos[0];
uint max_iterations_per_light = scene_info.infos[1];
// diffuse raytracing using a quadratic raster of rays
int half_diffuse_raster_steps = int(scene_info.infos[2]);
float raster_distance = uintBitsToFloat(scene_info.infos[3]);
int raster_points = (2 * half_diffuse_raster_steps + 1) * (2 * half_diffuse_raster_steps + 1);
float pos_infinity = uintBitsToFloat(0x7F800000);
// set limit for maximal iterations
uint max_iterations = max_num_lights * max_iterations_per_light * raster_points;
uint iteration_num = 0;
const uint absolute_max_compounds = 10;
uint max_num_compounds = min(scene_info.infos[6], absolute_max_compounds);
uvec4 unpack_color(uint val) {
// left most 8 bits first
uint val1 = (val >> 24);
uint val2 = (val << 8) >> 24;
uint val3 = (val << 16) >> 24;
uint val4 = (val << 24) >> 24;
return uvec4(val4, val3, val2, val1);
}
uint array_descr_offset = 6 + max_num_lights + max_num_compounds;
uint color_array_offset = 24 + 1;
uint sample_neighbor_from_scene_info(uint volume_start, uvec2 raster_pos, uint f) {
uint array_descr_start = volume_start + array_descr_offset;
uint color_array_start = array_descr_start + color_array_offset;
uint top_color_size_u = scene_info.infos[array_descr_start];
uint top_color_size_v = scene_info.infos[array_descr_start + 1];
uint bottom_color_size_u = scene_info.infos[array_descr_start + 2];
uint bottom_color_size_v = scene_info.infos[array_descr_start + 3];
uint left_color_size_u = scene_info.infos[array_descr_start + 4];
uint left_color_size_v = scene_info.infos[array_descr_start + 5];
uint right_color_size_u = scene_info.infos[array_descr_start + 6];
uint right_color_size_v = scene_info.infos[array_descr_start + 7];
uint front_color_size_u = scene_info.infos[array_descr_start + 8];
uint front_color_size_v = scene_info.infos[array_descr_start + 9];
uint back_color_size_u = scene_info.infos[array_descr_start + 10];
uint back_color_size_v = scene_info.infos[array_descr_start + 11];
uint top_neighbor_size_u = scene_info.infos[array_descr_start + 12];
uint top_neighbor_size_v = scene_info.infos[array_descr_start + 13];
uint bottom_neighbor_size_u = scene_info.infos[array_descr_start + 14];
uint bottom_neighbor_size_v = scene_info.infos[array_descr_start + 15];
uint left_neighbor_size_u = scene_info.infos[array_descr_start + 16];
uint left_neighbor_size_v = scene_info.infos[array_descr_start + 17];
uint right_neighbor_size_u = scene_info.infos[array_descr_start + 18];
uint right_neighbor_size_v = scene_info.infos[array_descr_start + 19];
uint front_neighbor_size_u = scene_info.infos[array_descr_start + 20];
uint front_neighbor_size_v = scene_info.infos[array_descr_start + 21];
uint back_neighbor_size_u = scene_info.infos[array_descr_start + 22];
uint back_neighbor_size_v = scene_info.infos[array_descr_start + 23];
uint top_color_size = top_color_size_u * top_color_size_v;
uint bottom_color_size = bottom_color_size_u * bottom_color_size_v;
uint left_color_size = left_color_size_u * left_color_size_v;
uint right_color_size = right_color_size_u * right_color_size_v;
uint front_color_size = front_color_size_u * front_color_size_v;
uint back_color_size = back_color_size_u * back_color_size_v;
uint color_array_end = color_array_start + top_color_size + bottom_color_size + left_color_size + right_color_size + front_color_size + back_color_size;
uint top_neighbor_size = top_neighbor_size_u * top_neighbor_size_v;
uint bottom_neighbor_size = bottom_neighbor_size_u * bottom_neighbor_size_v;
uint left_neighbor_size = left_neighbor_size_u * left_neighbor_size_v;
uint right_neighbor_size = right_neighbor_size_u * right_neighbor_size_v;
uint front_neighbor_size = front_neighbor_size_u * front_neighbor_size_v;
uint back_neighbor_size = back_neighbor_size_u * back_neighbor_size_v;
// maybe do an array solution for this as well
uint array_start = color_array_end + uint(f > 0) * top_neighbor_size + uint(f > 1) * bottom_neighbor_size + uint(f > 2) * left_neighbor_size + uint(f > 3) * right_neighbor_size + uint(f > 4) * front_neighbor_size;
uint us[6] = {top_neighbor_size_u, bottom_neighbor_size_u, left_neighbor_size_u, right_neighbor_size_u, front_neighbor_size_u, back_neighbor_size_u};
uint vs[6] = {top_neighbor_size_v, bottom_neighbor_size_v, left_neighbor_size_v, right_neighbor_size_v, front_neighbor_size_v, back_neighbor_size_v};
uint u_size = us[f];
uint v_size = vs[f];
uint value = scene_info.infos[array_start + raster_pos.x * v_size * uint(u_size > 1) + raster_pos.y * uint(v_size > 1)];
return value;
}
uint sample_neighbor_from_scene_info(uint volume_start, vec2 raster_pos, uint f) {
return sample_neighbor_from_scene_info(volume_start, uvec2(uint(floor(raster_pos.x)), uint(floor(raster_pos.y))), f);
}
uvec4 sample_color_from_scene_info(uint volume_start, uvec2 raster_pos, uint f) {
uint array_descr_start = volume_start + array_descr_offset;
uint color_array_start = array_descr_start + color_array_offset;
uint top_color_size_u = scene_info.infos[array_descr_start];
uint top_color_size_v = scene_info.infos[array_descr_start + 1];
uint bottom_color_size_u = scene_info.infos[array_descr_start + 2];
uint bottom_color_size_v = scene_info.infos[array_descr_start + 3];
uint left_color_size_u = scene_info.infos[array_descr_start + 4];
uint left_color_size_v = scene_info.infos[array_descr_start + 5];
uint right_color_size_u = scene_info.infos[array_descr_start + 6];
uint right_color_size_v = scene_info.infos[array_descr_start + 7];
uint front_color_size_u = scene_info.infos[array_descr_start + 8];
uint front_color_size_v = scene_info.infos[array_descr_start + 9];
uint back_color_size_u = scene_info.infos[array_descr_start + 10];
uint back_color_size_v = scene_info.infos[array_descr_start + 11];
uint top_size = top_color_size_u * top_color_size_v;
uint bottom_size = bottom_color_size_u * bottom_color_size_v;
uint left_size = left_color_size_u * left_color_size_v;
uint right_size = right_color_size_u * right_color_size_v;
uint front_size = front_color_size_u * front_color_size_v;
uint back_size = back_color_size_u * back_color_size_v;
// maybe do an array solution for this as well
uint array_start = color_array_start + uint(f > 0) * top_size + uint(f > 1) * bottom_size + uint(f > 2) * left_size + uint(f > 3) * right_size + uint(f > 4) * front_size;
uint us[6] = {top_color_size_u, bottom_color_size_u, left_color_size_u, right_color_size_u, front_color_size_u, back_color_size_u};
uint vs[6] = {top_color_size_v, bottom_color_size_v, left_color_size_v, right_color_size_v, front_color_size_v, back_color_size_v};
uint u_size = us[f];
uint v_size = vs[f];
uint value = scene_info.infos[array_start + clamp(raster_pos.x, 0, u_size) * v_size * uint(u_size > 1) + clamp(raster_pos.y, 0, v_size) * uint(v_size > 1)];
return unpack_color(value);
}
uvec4 sample_color_from_scene_info(uint volume_start, vec2 raster_pos, uint f) {
return sample_color_from_scene_info(volume_start, uvec2(uint(floor(raster_pos.x)), uint(floor(raster_pos.y))), f);
}
vec3 get_light_position(uint light_index) {
return vec3(uintBitsToFloat(scene_info.infos[light_index + 1]), uintBitsToFloat(scene_info.infos[light_index + 2]), uintBitsToFloat(scene_info.infos[light_index + 3]));
}
vec3 get_light_color(uint light_index) {
return vec3(float(scene_info.infos[light_index + 4]) / 255.0, float(scene_info.infos[light_index + 5]) / 255.0, float(scene_info.infos[light_index + 6]) / 255.0);
}
vec3 normal_for_facing(uint facing) {
if (facing == 0) {
return vec3(0.0, 0.0, -1.0);
}
if (facing == 1) {
return vec3(0.0, 0.0, 1.0);
}
if (facing == 2) {
return vec3(1.0, 0.0, 0.0);
}
if (facing == 3) {
return vec3(-1.0, 0.0, 0.0);
}
if (facing == 4) {
return vec3(0.0, 1.0, 0.0);
}
if (facing == 5) {
return vec3(0.0, -1.0, 0.0);
}
return vec3(0.0, 0.0, 0.0);
}
vec3 reflect_vector(vec3 direction, uint facing) {
vec3 normal = normal_for_facing(facing);
return direction - 2.0 * dot(direction, normal) * normal;
}
uvec3 parent_child_vec(uint child_size, uint child_index) {
if (child_index == 1) {
return uvec3(0, 0, 0);
}
if (child_index == 2) {
return uvec3(child_size, 0, 0);
}
if (child_index == 3) {
return uvec3(0, child_size, 0);
}
if (child_index == 4) {
return uvec3(child_size, child_size, 0);
}
if (child_index == 5) {
return uvec3(0, 0, child_size);
}
if (child_index == 6) {
return uvec3(child_size, 0, child_size);
}
if (child_index == 7) {
return uvec3(0, child_size, child_size);
}
if (child_index == 8) {
return uvec3(child_size, child_size, child_size);
}
return uvec3(0, 0, 0);
}
uint next_oct_tree_child(vec3 mid_point, vec3 check_pos, bool child_open[8]) {
if (check_pos.x <= mid_point.x && check_pos.y <= mid_point.y && check_pos.z <= mid_point.z && child_open[0]) {
return 1;
}
if (check_pos.x >= mid_point.x && check_pos.y <= mid_point.y && check_pos.z <= mid_point.z && child_open[1]) {
return 2;
}
if (check_pos.x <= mid_point.x && check_pos.y >= mid_point.y && check_pos.z <= mid_point.z && child_open[2]) {
return 3;
}
if (check_pos.x >= mid_point.x && check_pos.y >= mid_point.y && check_pos.z <= mid_point.z && child_open[3]) {
return 4;
}
if (check_pos.x <= mid_point.x && check_pos.y <= mid_point.y && check_pos.z >= mid_point.z && child_open[4]) {
return 5;
}
if (check_pos.x >= mid_point.x && check_pos.y <= mid_point.y && check_pos.z >= mid_point.z && child_open[5]) {
return 6;
}
if (check_pos.x <= mid_point.x && check_pos.y >= mid_point.y && check_pos.z >= mid_point.z && child_open[6]) {
return 7;
}
if (check_pos.x >= mid_point.x && check_pos.y >= mid_point.y && check_pos.z >= mid_point.z && child_open[7]) {
return 8;
}
return 0; // return to parent
}
struct Tracing {
vec3 end_pos;
uvec4 end_color;
uint end_volume;
uint end_facing;
float end_factor;
uint end_cycle;
bool has_hit;
vec3 color_mul;
uvec2 end_raster;
vec3 end_direction;
bool has_transparent_hit;
};
Tracing trace_ray(uint volume_start, vec3 starting_pos, vec3 start_direction, float start_max_factor, bool allow_reflect) {
vec3 direction = start_direction;
float max_factor = start_max_factor;
vec3 pos = starting_pos;
// setup volume info
uint volume_index = volume_start;
float volume_scale = uintBitsToFloat(scene_info.infos[volume_index + array_descr_offset + color_array_offset - 1]);
float volume_pos_x = uintBitsToFloat(scene_info.infos[volume_index + 0]);
float volume_pos_y = uintBitsToFloat(scene_info.infos[volume_index + 1]);
float volume_pos_z = uintBitsToFloat(scene_info.infos[volume_index + 2]);
bool x_pos = direction.x > 0.0;
bool x_null = (direction.x == 0.0);
bool y_pos = direction.y > 0.0;
bool y_null = (direction.y == 0.0);
bool z_pos = direction.z > 0.0;
bool z_null = (direction.z == 0.0);
// default is max factor, that way we avoid collision when going parallel to an axis. The other directions will score a hit
float x_factor = max_factor;
float y_factor = max_factor;
float z_factor = max_factor;
Tracing result;
result.has_hit = false;
result.has_transparent_hit = false;
result.color_mul = vec3(1.0, 1.0, 1.0);
// intermediate storage for transparent hit values
vec3 end_pos_transparent;
uvec4 end_color_transparent;
uint end_volume_transparent;
uint end_facing_transparent;
uvec2 end_raster_transparent;
vec3 color_mul_transparent;
uint next_volumetric_index = 0;
uint[absolute_max_compounds] done_volumetrics;
for (int i=0; i < max_num_compounds; i++) {
done_volumetrics[i] = 0;
}
uint[absolute_max_compounds] compound_starts;
float[absolute_max_compounds] hit_factors;
bool[absolute_max_compounds] is_x_hits;
bool[absolute_max_compounds] is_y_hits;
bool[absolute_max_compounds] is_z_hits;
bool[absolute_max_compounds] hits_inside;
while (iteration_num < max_iterations) {
iteration_num ++;
for (int i=0; i < max_num_compounds; i++) {
compound_starts[i] = 0;
hit_factors[i] = 0.0;
is_x_hits[i] = false;
is_y_hits[i] = false;
is_z_hits[i] = false;
hits_inside[i] = false;
}
uint compound_num = 0;
// go over the borders by this amount
float overstep = 0.00001 / length(direction);
uint hits = 0;
while (scene_info.infos[volume_index + 6 + max_num_lights + compound_num] != 0 && compound_num < max_num_compounds && iteration_num < max_iterations && !result.has_hit) {
uint compound_start = scene_info.infos[volume_index + 6 + max_num_lights + compound_num];
bool already_checked = false;
for (int i=0; i < max_num_compounds; i++) {
if (compound_start == done_volumetrics[i]) {
already_checked = true;
break;
}
}
if (already_checked) {
compound_num += 1;
continue;
}
//iteration_num ++;
uint oct_tree_index = compounds[compound_start + 8];
uint compound_grid_size = compounds[compound_start];
float compound_scale = uintBitsToFloat(compounds[compound_start + 1]);
vec3 compound_pos = vec3(uintBitsToFloat(compounds[compound_start + 5]), uintBitsToFloat(compounds[compound_start + 6]), uintBitsToFloat(compounds[compound_start + 7]));
// check if we hit the volume
float x_border = compound_pos.x + float((compound_grid_size) * uint(!x_pos)) * compound_scale;
float y_border = compound_pos.y + float((compound_grid_size) * uint(!y_pos)) * compound_scale;
float z_border = compound_pos.z + float((compound_grid_size) * uint(!z_pos)) * compound_scale;
if (!x_null) {
x_factor = (x_border - pos.x) / direction.x;
} else {
x_factor = max_factor;
}
if (!y_null) {
y_factor = (y_border - pos.y) / direction.y;
} else {
y_factor = max_factor;
}
if (!z_null) {
z_factor = (z_border - pos.z) / direction.z;
} else {
z_factor = max_factor;
}
x_factor += overstep;
y_factor += overstep;
z_factor += overstep;
vec3 intersection_pos = pos + 10.0 * overstep * direction;
bool is_x_hit = false;
bool is_y_hit = false;
bool is_z_hit = false;
bool hit_inside = false;
float hit_factor;
// check that either the hit is in range or we are inside of the compound from the start
if ((compound_pos.x <= intersection_pos.x && intersection_pos.x <= compound_pos.x + float(compound_grid_size) * compound_scale) &&
(compound_pos.y <= intersection_pos.y && intersection_pos.y <= compound_pos.y + float(compound_grid_size) * compound_scale) &&
(compound_pos.z <= intersection_pos.z && intersection_pos.z <= compound_pos.z + float(compound_grid_size) * compound_scale)){
hit_inside = true;
hit_factor = 10.0 * overstep;
} else {
vec3 intersection_pos_x = pos + x_factor * direction;
vec3 intersection_pos_y = pos + y_factor * direction;
vec3 intersection_pos_z = pos + z_factor * direction;
if ((compound_pos.x <= intersection_pos_x.x && intersection_pos_x.x <= compound_pos.x + float(compound_grid_size) * compound_scale) &&
(compound_pos.y <= intersection_pos_x.y && intersection_pos_x.y <= compound_pos.y + float(compound_grid_size) * compound_scale) &&
(compound_pos.z <= intersection_pos_x.z && intersection_pos_x.z <= compound_pos.z + float(compound_grid_size) * compound_scale) && x_factor > 0.0 && x_factor <= max_factor) {
hit_inside = true;
is_x_hit = true;
intersection_pos = intersection_pos_x;
hit_factor = x_factor;
}
if ((compound_pos.x <= intersection_pos_y.x && intersection_pos_y.x <= compound_pos.x + float(compound_grid_size) * compound_scale) &&
(compound_pos.y <= intersection_pos_y.y && intersection_pos_y.y <= compound_pos.y + float(compound_grid_size) * compound_scale) &&
(compound_pos.z <= intersection_pos_y.z && intersection_pos_y.z <= compound_pos.z + float(compound_grid_size) * compound_scale) && y_factor > 0.0 && y_factor <= max_factor && (y_factor < x_factor || !is_x_hit)) {
hit_inside = true;
is_y_hit = true;
intersection_pos = intersection_pos_y;
hit_factor = y_factor;
}
if ((compound_pos.x <= intersection_pos_z.x && intersection_pos_z.x <= compound_pos.x + float(compound_grid_size) * compound_scale) &&
(compound_pos.y <= intersection_pos_z.y && intersection_pos_z.y <= compound_pos.y + float(compound_grid_size) * compound_scale) &&
(compound_pos.z <= intersection_pos_z.z && intersection_pos_z.z <= compound_pos.z + float(compound_grid_size) * compound_scale) && z_factor > 0.0 && z_factor <= max_factor && (z_factor < x_factor || !is_x_hit) && (z_factor < y_factor || !is_y_hit)) {
hit_inside = true;
is_z_hit = true;
intersection_pos = intersection_pos_z;
hit_factor = z_factor;
}
}
compound_starts[hits] = compound_start;
hit_factors[hits] = hit_factor;
is_x_hits[hits] = is_x_hit;
is_y_hits[hits] = is_y_hit;
is_z_hits[hits] = is_z_hit;
hits_inside[hits] = hit_inside;
hits += 1 * uint(hit_inside);
done_volumetrics[next_volumetric_index] = compound_start;
next_volumetric_index = (next_volumetric_index + 1) % max_num_compounds;
compound_num += 1;
}
for (int i =0; i < hits; i++) {
if (result.has_hit) {
break;
}
// find encounters in order
float min_factor = max_factor;
uint min_index = 0;
for (int j = 0; j < hits; j++) {
if (hit_factors[j] < min_factor) {
min_factor = hit_factors[j];
min_index = j;
}
}
// set up the compound
uint compound_start = compound_starts[min_index];
bool is_x_hit = is_x_hits[min_index];
bool is_y_hit = is_y_hits[min_index];
bool is_z_hit = is_z_hits[min_index];
uint oct_tree_index = compounds[compound_start + 8];
uint compound_grid_size = compounds[compound_start];
float compound_scale = uintBitsToFloat(compounds[compound_start + 1]);
vec3 compound_pos = vec3(uintBitsToFloat(compounds[compound_start + 5]), uintBitsToFloat(compounds[compound_start + 6]), uintBitsToFloat(compounds[compound_start + 7]));
vec3 intersection_pos = pos + hit_factors[min_index] * direction;
// invalidate the min found
hit_factors[min_index] = max_factor;
vec3 oct_tree_pos = vec3(compound_pos);
uint current_size = compound_grid_size;
vec3 mid_point = oct_tree_pos + float(current_size / 2) * vec3(compound_scale, compound_scale, compound_scale);
bool children_open[8] = {true, true, true, true, true, true, true, true};
uint oct_tree_address = oct_tree_index;
// iterate through the oct_tree
uint check_it = 0;
uint max_check_it = 60;
uint prev_child = 0;
uint prev_prev_child = 0;
uvec3 grid_pos = uvec3(0, 0, 0);
uvec3 parent_pos = uvec3(0, 0, 0);
bool has_moved = false;
while (!result.has_hit && check_it < max_check_it) {
// failsafe to get out in case has_moved runs into an accuracy issue
check_it ++;
oct_tree_pos = vec3(grid_pos) * compound_scale + compound_pos;
mid_point = oct_tree_pos + (float(current_size / 2) * vec3(compound_scale, compound_scale, compound_scale));
uint child_index = next_oct_tree_child(mid_point, intersection_pos, children_open);
if (child_index == 0) {
// go up to parent
// if parent is 0 abort, as we have reached the root node again and try to exit it
if (oct_tree_mem[oct_tree_address] == 0) {
break;
}
for (int i=0; i < 8; i++) {
children_open[i] = true;
}
uint parent_index = oct_tree_mem[oct_tree_address];
// check which child we came from
child_index = 1 * uint(oct_tree_address == oct_tree_mem[parent_index + 1]) + 2 * uint(oct_tree_address == oct_tree_mem[parent_index + 2]) + 3 * uint(oct_tree_address == oct_tree_mem[parent_index + 3]) + 4 * uint(oct_tree_address == oct_tree_mem[parent_index + 4]) + 5 * uint(oct_tree_address == oct_tree_mem[parent_index + 5]) + 6 * uint(oct_tree_address == oct_tree_mem[parent_index + 6]) + 7 * uint(oct_tree_address == oct_tree_mem[parent_index + 7]) + 8 * uint(oct_tree_address == oct_tree_mem[parent_index + 8]);
// mark as done to avoid reinvestigating, since intersection_pos is on its edge
children_open[child_index - 1] = false;
prev_prev_child = prev_child;
prev_child = oct_tree_address;
uvec3 back_vec = parent_child_vec(current_size, child_index);
grid_pos -= parent_child_vec(current_size, child_index);
current_size *= 2;
oct_tree_address = parent_index;
} else {
// go down into child
if (current_size == 2) {
// check block if hit break
if (oct_tree_mem[oct_tree_address + child_index] != 0) {
result.has_hit = true;
result.end_color = unpack_color(oct_tree_mem[oct_tree_address + child_index]);
break;
}
} else {
// check if the child has content, else skip to next child of current parent
uint x = oct_tree_mem[oct_tree_address + child_index];
if (oct_tree_mem[x] != 0) {
// change base address and position to child
current_size /= 2;
oct_tree_address = x;
grid_pos += parent_child_vec(current_size, child_index);
for (int i=0; i < 8; i++) {
children_open[i] = true;
}
continue;
}
}
children_open[child_index - 1] = false;
// we did not go deeper or had a hit, so intersection pos needs to be updated
// new intersection pos calc
vec3 offset = vec3(parent_child_vec(current_size / 2, child_index)) * compound_scale;
vec3 low = oct_tree_pos + offset;
float x_border = low.x + float((compound_scale * current_size / 2) * uint(x_pos));
float y_border = low.y + float((compound_scale * current_size / 2) * uint(y_pos));
float z_border = low.z + float((compound_scale * current_size / 2) * uint(z_pos));
if (!x_null) {
x_factor = (x_border - pos.x) / direction.x;
if (x_factor <= 0.0) {
x_factor = max_factor;
}
} else {
x_factor = max_factor;
}
if (!y_null) {
y_factor = (y_border - pos.y) / direction.y;
if (y_factor <= 0.0) {
y_factor = max_factor;
}
} else {
y_factor = max_factor;
}
if (!z_null) {
z_factor = (z_border - pos.z) / direction.z;
if (z_factor <= 0.0) {
z_factor = max_factor;
}
} else {
z_factor = max_factor;
}
float smallest_factor = min(min(x_factor, y_factor), z_factor);
if (x_factor == smallest_factor) {
is_x_hit = true;
is_y_hit = false;
is_z_hit = false;
}
if (y_factor == smallest_factor) {
is_x_hit = false;
is_y_hit = true;
is_z_hit = false;
}
if (z_factor == smallest_factor) {
is_x_hit = false;
is_y_hit = false;
is_z_hit = true;
}
// move a bit further to fully enter the next quadrant
smallest_factor += overstep;
//has_moved = length(intersection_pos - (pos + smallest_factor * direction)) >= 0.00001;
has_moved = intersection_pos != (pos + smallest_factor * direction);
intersection_pos = pos + smallest_factor * direction;
}
}
uint hit_facing = uint(is_x_hit) * (2 + uint(x_pos)) + uint(is_y_hit) * (4 + uint(y_pos)) + uint(is_z_hit && !z_pos);
//result.has_hit = true;
result.end_pos = intersection_pos;
result.end_facing = hit_facing;
result.end_volume = volume_index;
result.end_direction = direction;
}
if (result.has_hit) {
break;
}
float x_border = volume_pos_x + float((scene_info.infos[volume_index + 3]) * uint(x_pos)) * volume_scale - 0.5 * volume_scale;
float y_border = volume_pos_y + float((scene_info.infos[volume_index + 4]) * uint(y_pos)) * volume_scale - 0.5 * volume_scale;
float z_border = volume_pos_z + float((scene_info.infos[volume_index + 5]) * uint(z_pos)) * volume_scale - 0.5 * volume_scale;
bool needs_next_light = false;
if (!x_null) {
x_factor = (x_border - pos.x) / direction.x;
} else {
x_factor = max_factor;
}
if (!y_null) {
y_factor = (y_border - pos.y) / direction.y;
} else {
y_factor = max_factor;
}
if (!z_null) {
z_factor = (z_border - pos.z) / direction.z;
} else {
z_factor = max_factor;
}
if ((x_factor >= max_factor) && (y_factor >= max_factor) && (z_factor >= max_factor)) {
// no hit, finish tracking
break;
} else {
// if there is a border hit before reaching the end
// change to the relevant next volume
// Todo: look into removing ifs from this
uint hit_facing = 0;
uint u = 0;
uint v = 0;
bool is_x_smallest = x_factor < y_factor && x_factor < z_factor;
bool is_y_smallest = y_factor < x_factor && y_factor < z_factor;
bool is_z_smallest = z_factor <= x_factor && z_factor <= y_factor;
hit_facing = uint(is_x_smallest) * (2 + uint(x_pos)) + uint(is_y_smallest) * (4 + uint(y_pos)) + uint(is_z_smallest && !z_pos);
float smallest_factor = min(min(x_factor, y_factor), z_factor); // maybe use multiplication instead?
vec3 intersection_pos = pos + smallest_factor * direction;
u = uint(is_x_smallest) * (uint(round((intersection_pos.y - volume_pos_y) / volume_scale))) +
uint(is_y_smallest || is_z_smallest) * (uint(round((intersection_pos.x - volume_pos_x) / volume_scale)));
v = uint(is_x_smallest || is_y_smallest) * (uint(round((intersection_pos.z - volume_pos_z) / volume_scale))) +
uint(is_z_smallest) * (uint(round((intersection_pos.y - volume_pos_y) / volume_scale)));
uint next_neighbor = sample_neighbor_from_scene_info(volume_index, uvec2(u, v), hit_facing);
uvec4 color_sample = sample_color_from_scene_info(volume_index, uvec2(u, v), hit_facing);
if (color_sample.xyz == uvec3(0, 0, 0)) {
// not a color hit, so check neighbor
if (next_neighbor != 0) {
volume_index = next_neighbor;
volume_scale = uintBitsToFloat(scene_info.infos[volume_index + array_descr_offset + color_array_offset - 1]);
volume_pos_x = uintBitsToFloat(scene_info.infos[volume_index + 0]);
volume_pos_y = uintBitsToFloat(scene_info.infos[volume_index + 1]);
volume_pos_z = uintBitsToFloat(scene_info.infos[volume_index + 2]);
} else {
// neighbor miss
end_color_transparent = uvec4(255, 0, 0, 255);
result.end_color = uvec4(255, 0, 0, 255);
break;
}
} else {
if (next_neighbor != 0) {
// transparent hit, move on but change the color
end_volume_transparent = volume_index;
color_mul_transparent = result.color_mul;
volume_index = next_neighbor;
volume_scale = uintBitsToFloat(scene_info.infos[volume_index + array_descr_offset + color_array_offset - 1]);
volume_pos_x = uintBitsToFloat(scene_info.infos[volume_index + 0]);
volume_pos_y = uintBitsToFloat(scene_info.infos[volume_index + 1]);
volume_pos_z = uintBitsToFloat(scene_info.infos[volume_index + 2]);
result.color_mul = result.color_mul * vec3(float(color_sample.x) / 255.0, float(color_sample.y) / 255.0, float(color_sample.z) / 255.0);
result.has_transparent_hit = true;
result.end_volume = volume_index;
result.end_direction = direction;
end_color_transparent = color_sample;
end_raster_transparent = uvec2(u, v);
end_pos_transparent = intersection_pos;
end_facing_transparent = hit_facing;
// stop iterating if there is barely anything left to see
if (max(result.color_mul.x, max(result.color_mul.y, result.color_mul.z)) < 0.1) {
break;
}
} else {
// color hit, either reflect or move on
result.end_pos = intersection_pos;
result.end_facing = hit_facing;
result.end_color = color_sample;
result.end_raster = uvec2(u, v);
result.has_hit = true;
result.end_volume = volume_index;
result.end_direction = direction;
float reflectivity = 1.0 - float(color_sample.w) / 255.0;
vec3 refltective_color_mul = result.color_mul * vec3(float(color_sample.x) / 255.0, float(color_sample.y) / 255.0, float(color_sample.z) / 255.0);
vec3 visibility_after_reflection = refltective_color_mul * reflectivity;
//break;
//max(visibility_after_reflection.x, max(visibility_after_reflection.y, visibility_after_reflection.z)) >= 0.1 &&
if (max(visibility_after_reflection.x, max(visibility_after_reflection.y, visibility_after_reflection.z)) >= 0.1 && allow_reflect) {
// do reflect
direction = reflect_vector(direction, hit_facing);
pos = intersection_pos;
//max_factor -= smallest_factor;
x_pos = direction.x > 0.0;
x_null = (direction.x == 0.0);
y_pos = direction.y > 0.0;
y_null = (direction.y == 0.0);
z_pos = direction.z > 0.0;
z_null = (direction.z == 0.0);
// clear volumetrics for reevaluation
for (int i=0; i < max_num_compounds; i++) {
done_volumetrics[i] = 0;
}
} else {
break;
}
}
}
}
}
result.end_factor = min(min(x_factor, y_factor), z_factor);
result.end_cycle = iteration_num;
// in case we have a transparent hit but no hit afterwards
if (!result.has_hit && result.has_transparent_hit) {
// did we stop because nothing could be seen through the object?
if (max(result.color_mul.x, max(result.color_mul.y, result.color_mul.z)) < 0.1) {
// if so count it as a hit and recover the pre transparent color multiplier
result.has_hit = true;
result.color_mul = color_mul_transparent;
}
result.end_pos = end_pos_transparent;
result.end_color = end_color_transparent;
result.end_volume = end_volume_transparent;
result.end_facing = end_facing_transparent;
result.end_raster = end_raster_transparent;
}
return result;
}
vec3 get_lighting_color(uint volume_start, vec3 starting_pos, vec4 orig_color_sample, vec3 normal) {
uint light_num = 0;
// initialize color
vec3 color_sum = vec3(0.0, 0.0, 0.0);// + (orig_color_sample.xyz * 0.005);
while (iteration_num < max_iterations) {
// setup light info
uint light_index = scene_info.infos[volume_start + 6 + light_num];
if (light_index == 0) {
// abort if there is no new light
break;
}
vec3 light_direction;
float max_factor;
if (scene_info.infos[light_index] == 0) {
//point light
light_direction = get_light_position(light_index) - starting_pos;
max_factor = 1.0;
} else if (scene_info.infos[light_index] == 1) {
// directional light
light_direction = -normalize(get_light_position(light_index));
max_factor = pos_infinity;
}
vec3 light_color = get_light_color(light_index);
Tracing result = trace_ray(volume_start, starting_pos, light_direction, max_factor, false);
// add result, if there is a hit the null vector will be added
color_sum += float(!result.has_hit) * result.color_mul * max(dot(normal, normalize(light_direction)), 0.0) * (orig_color_sample.xyz * light_color) / (length(light_direction) * length(light_direction));
light_num += 1;
if (light_num >= max_num_lights) {
break;
}
}
return color_sum;
}
vec3 diffuse_tracing(uint volume_start, uvec4 color_roughness, vec3 pos, uint f) {
vec4 orig_color_sample = vec4(float(color_roughness.x) / 255.0, float(color_roughness.y) / 255.0, float(color_roughness.z) / 255.0, 1);
vec3 normal = normal_for_facing(f);
vec3 color_sum = vec3(0.0, 0.0, 0.0);
for (int u_offset = -half_diffuse_raster_steps; u_offset <= half_diffuse_raster_steps; u_offset++) {
for (int v_offset = -half_diffuse_raster_steps; v_offset <= half_diffuse_raster_steps; v_offset++) {
float x_offset = raster_distance * float(u_offset) * float(f == 0 || f == 1 || f == 4 || f == 5);
float y_offset = raster_distance * float(u_offset) * float(f == 2 || f == 3);
y_offset += raster_distance * float(v_offset) * float(f == 0 || f == 1);
float z_offset = raster_distance * float(v_offset) * float(f == 4 || f == 5 || f == 2 || f == 3);
vec3 offset = vec3(x_offset, y_offset, z_offset);
color_sum += get_lighting_color(volume_start, pos + offset, orig_color_sample, normal) / float(raster_points);
}
}
return color_sum;
}
vec3 clamp_to_volume(uint volume_start, vec3 position) {
float volume_pos_x = uintBitsToFloat(scene_info.infos[volume_start + 0]);
float volume_pos_y = uintBitsToFloat(scene_info.infos[volume_start + 1]);
float volume_pos_z = uintBitsToFloat(scene_info.infos[volume_start + 2]);
float volume_scale = uintBitsToFloat(scene_info.infos[volume_start + array_descr_offset + color_array_offset - 1]);
float high_x_border = volume_pos_x + float(scene_info.infos[volume_start + 3]) * volume_scale - 0.501 * volume_scale;
float high_y_border = volume_pos_y + float(scene_info.infos[volume_start + 4]) * volume_scale - 0.501 * volume_scale;
float high_z_border = volume_pos_z + float(scene_info.infos[volume_start + 5]) * volume_scale - 0.501 * volume_scale;
float low_x_border = float(volume_pos_x) - 0.501 * volume_scale;
float low_y_border = float(volume_pos_y) - 0.501 * volume_scale;
float low_z_border = float(volume_pos_z) - 0.501 * volume_scale;
return vec3(min(max(position.x, low_x_border), high_x_border), min(max(position.y, low_y_border), high_y_border), min(max(position.z, low_z_border), high_z_border));
}
vec2 clamp_to_quad(vec2 raster_pos, uvec2 min_raster_pos, uvec2 max_raster_pos) {
return vec2(max(min_raster_pos.x, min(max_raster_pos.x - 1, raster_pos.x)), max(min_raster_pos.y, min(max_raster_pos.y - 1, raster_pos.y)));
}
vec3 add_reflection(vec3 view_vector, uint f, uint volume_start, vec3 pos, uvec4 color_sample, vec3 color_sum) {
float reflectivity = 1.0 - float(color_sample.w) / 255.0;
if (reflectivity > 0.01) {
vec3 orig_color_sample = vec3(float(color_sample.x) / 255.0, float(color_sample.y) / 255.0, float(color_sample.z) / 255.0);
vec3 reflection_direction = reflect_vector(view_vector, f);
Tracing reflection_tracing = trace_ray(volume_start, pos, reflection_direction, pos_infinity, true);
if (reflection_tracing.has_hit || reflection_tracing.has_transparent_hit) {
vec3 color_from_reflection = diffuse_tracing(reflection_tracing.end_volume, reflection_tracing.end_color, reflection_tracing.end_pos, reflection_tracing.end_facing) * orig_color_sample;
color_sum = color_sum * (1.0 - reflectivity) + color_from_reflection * reflectivity;
}
}
return color_sum;
}

View file

@ -24,13 +24,19 @@ layout(binding = 0) uniform UniformBufferObject {
// 3 - diffuse raster size (float, needs to be decoded)
// 4 - max recursive rays
// 5 - diffuse rays per hit
// 6 - maximum number of compounds per light
layout(binding = 2) readonly buffer SceneInfoBuffer{
uint infos[];
} scene_info;
layout(binding = 4) buffer SceneInfoBuffer2 {
uint infos[];
} scene_info2;
layout(binding = 3) readonly buffer CompoundBuffer {
uint compounds[];
};
layout(binding = 10) readonly buffer OctTreeMemory {
uint oct_tree_mem[];
};
uint max_num_lights = scene_info.infos[0];
uint max_iterations_per_light = scene_info.infos[1];
// diffuse raytracing using a quadratic raster of rays
@ -41,6 +47,8 @@ float pos_infinity = uintBitsToFloat(0x7F800000);
// set limit for maximal iterations
uint max_iterations = max_num_lights * max_iterations_per_light * raster_points;
uint iteration_num = 0;
const uint absolute_max_compounds = 10;
uint max_num_compounds = min(scene_info.infos[6], absolute_max_compounds);
uvec4 unpack_color(uint val) {
// left most 8 bits first
@ -52,7 +60,7 @@ uvec4 unpack_color(uint val) {
return uvec4(val4, val3, val2, val1);
}
uint array_descr_offset = 6 + max_num_lights;
uint array_descr_offset = 6 + max_num_lights + max_num_compounds;
uint color_array_offset = 24 + 1;
uint sample_neighbor_from_scene_info(uint volume_start, uvec2 raster_pos, uint f) {
@ -204,6 +212,63 @@ vec3 reflect_vector(vec3 direction, uint facing) {
return direction - 2.0 * dot(direction, normal) * normal;
}
uvec3 parent_child_vec(uint child_size, uint child_index) {
if (child_index == 1) {
return uvec3(0, 0, 0);
}
if (child_index == 2) {
return uvec3(child_size, 0, 0);
}
if (child_index == 3) {
return uvec3(0, child_size, 0);
}
if (child_index == 4) {
return uvec3(child_size, child_size, 0);
}
if (child_index == 5) {
return uvec3(0, 0, child_size);
}
if (child_index == 6) {
return uvec3(child_size, 0, child_size);
}
if (child_index == 7) {
return uvec3(0, child_size, child_size);
}
if (child_index == 8) {
return uvec3(child_size, child_size, child_size);
}
return uvec3(0, 0, 0);
}
uint next_oct_tree_child(vec3 mid_point, vec3 check_pos, bool child_open[8]) {
if (check_pos.x <= mid_point.x && check_pos.y <= mid_point.y && check_pos.z <= mid_point.z && child_open[0]) {
return 1;
}
if (check_pos.x >= mid_point.x && check_pos.y <= mid_point.y && check_pos.z <= mid_point.z && child_open[1]) {
return 2;
}
if (check_pos.x <= mid_point.x && check_pos.y >= mid_point.y && check_pos.z <= mid_point.z && child_open[2]) {
return 3;
}
if (check_pos.x >= mid_point.x && check_pos.y >= mid_point.y && check_pos.z <= mid_point.z && child_open[3]) {
return 4;
}
if (check_pos.x <= mid_point.x && check_pos.y <= mid_point.y && check_pos.z >= mid_point.z && child_open[4]) {
return 5;
}
if (check_pos.x >= mid_point.x && check_pos.y <= mid_point.y && check_pos.z >= mid_point.z && child_open[5]) {
return 6;
}
if (check_pos.x <= mid_point.x && check_pos.y >= mid_point.y && check_pos.z >= mid_point.z && child_open[6]) {
return 7;
}
if (check_pos.x >= mid_point.x && check_pos.y >= mid_point.y && check_pos.z >= mid_point.z && child_open[7]) {
return 8;
}
return 0; // return to parent
}
struct Tracing {
vec3 end_pos;
uvec4 end_color;
@ -257,8 +322,303 @@ Tracing trace_ray(uint volume_start, vec3 starting_pos, vec3 start_direction, fl
uvec2 end_raster_transparent;
vec3 color_mul_transparent;
uint next_volumetric_index = 0;
uint[absolute_max_compounds] done_volumetrics;
for (int i=0; i < max_num_compounds; i++) {
done_volumetrics[i] = 0;
}
uint[absolute_max_compounds] compound_starts;
float[absolute_max_compounds] hit_factors;
bool[absolute_max_compounds] is_x_hits;
bool[absolute_max_compounds] is_y_hits;
bool[absolute_max_compounds] is_z_hits;
bool[absolute_max_compounds] hits_inside;
while (iteration_num < max_iterations) {
iteration_num ++;
for (int i=0; i < max_num_compounds; i++) {
compound_starts[i] = 0;
hit_factors[i] = 0.0;
is_x_hits[i] = false;
is_y_hits[i] = false;
is_z_hits[i] = false;
hits_inside[i] = false;
}
uint compound_num = 0;
// go over the borders by this amount
float overstep = 0.00001 / length(direction);
uint hits = 0;
// todo needs depth ordering of volumetrics inside of the volume
while (scene_info.infos[volume_index + 6 + max_num_lights + compound_num] != 0 && compound_num < max_num_compounds && iteration_num < max_iterations && !result.has_hit) {
uint compound_start = scene_info.infos[volume_index + 6 + max_num_lights + compound_num];
bool already_checked = false;
for (int i=0; i < max_num_compounds; i++) {
if (compound_start == done_volumetrics[i]) {
already_checked = true;
break;
}
}
if (already_checked) {
compound_num += 1;
continue;
}
//iteration_num ++;
uint oct_tree_index = compounds[compound_start + 8];
uint compound_grid_size = compounds[compound_start];
float compound_scale = uintBitsToFloat(compounds[compound_start + 1]);
vec3 compound_pos = vec3(uintBitsToFloat(compounds[compound_start + 5]), uintBitsToFloat(compounds[compound_start + 6]), uintBitsToFloat(compounds[compound_start + 7]));
// check if we hit the volume
float x_border = compound_pos.x + float((compound_grid_size) * uint(!x_pos)) * compound_scale;
float y_border = compound_pos.y + float((compound_grid_size) * uint(!y_pos)) * compound_scale;
float z_border = compound_pos.z + float((compound_grid_size) * uint(!z_pos)) * compound_scale;
if (!x_null) {
x_factor = (x_border - pos.x) / direction.x;
} else {
x_factor = max_factor;
}
if (!y_null) {
y_factor = (y_border - pos.y) / direction.y;
} else {
y_factor = max_factor;
}
if (!z_null) {
z_factor = (z_border - pos.z) / direction.z;
} else {
z_factor = max_factor;
}
x_factor += overstep;
y_factor += overstep;
z_factor += overstep;
vec3 intersection_pos = pos + 10.0 * overstep * direction;
bool is_x_hit = false;
bool is_y_hit = false;
bool is_z_hit = false;
bool hit_inside = false;
float hit_factor;
// check that either the hit is in range or we are inside of the compound from the start
if ((compound_pos.x <= intersection_pos.x && intersection_pos.x <= compound_pos.x + float(compound_grid_size) * compound_scale) &&
(compound_pos.y <= intersection_pos.y && intersection_pos.y <= compound_pos.y + float(compound_grid_size) * compound_scale) &&
(compound_pos.z <= intersection_pos.z && intersection_pos.z <= compound_pos.z + float(compound_grid_size) * compound_scale)){
hit_inside = true;
hit_factor = 10.0 * overstep;
} else {
vec3 intersection_pos_x = pos + x_factor * direction;
vec3 intersection_pos_y = pos + y_factor * direction;
vec3 intersection_pos_z = pos + z_factor * direction;
if ((compound_pos.x <= intersection_pos_x.x && intersection_pos_x.x <= compound_pos.x + float(compound_grid_size) * compound_scale) &&
(compound_pos.y <= intersection_pos_x.y && intersection_pos_x.y <= compound_pos.y + float(compound_grid_size) * compound_scale) &&
(compound_pos.z <= intersection_pos_x.z && intersection_pos_x.z <= compound_pos.z + float(compound_grid_size) * compound_scale) && x_factor > 0.0 && x_factor <= max_factor) {
hit_inside = true;
is_x_hit = true;
intersection_pos = intersection_pos_x;
hit_factor = x_factor;
}
if ((compound_pos.x <= intersection_pos_y.x && intersection_pos_y.x <= compound_pos.x + float(compound_grid_size) * compound_scale) &&
(compound_pos.y <= intersection_pos_y.y && intersection_pos_y.y <= compound_pos.y + float(compound_grid_size) * compound_scale) &&
(compound_pos.z <= intersection_pos_y.z && intersection_pos_y.z <= compound_pos.z + float(compound_grid_size) * compound_scale) && y_factor > 0.0 && y_factor <= max_factor && (y_factor < x_factor || !is_x_hit)) {
hit_inside = true;
is_y_hit = true;
intersection_pos = intersection_pos_y;
hit_factor = y_factor;
}
if ((compound_pos.x <= intersection_pos_z.x && intersection_pos_z.x <= compound_pos.x + float(compound_grid_size) * compound_scale) &&
(compound_pos.y <= intersection_pos_z.y && intersection_pos_z.y <= compound_pos.y + float(compound_grid_size) * compound_scale) &&
(compound_pos.z <= intersection_pos_z.z && intersection_pos_z.z <= compound_pos.z + float(compound_grid_size) * compound_scale) && z_factor > 0.0 && z_factor <= max_factor && (z_factor < x_factor || !is_x_hit) && (z_factor < y_factor || !is_y_hit)) {
hit_inside = true;
is_z_hit = true;
intersection_pos = intersection_pos_z;
hit_factor = z_factor;
}
}
compound_starts[hits] = compound_start;
hit_factors[hits] = hit_factor;
is_x_hits[hits] = is_x_hit;
is_y_hits[hits] = is_y_hit;
is_z_hits[hits] = is_z_hit;
hits_inside[hits] = hit_inside;
hits += 1 * uint(hit_inside);
done_volumetrics[next_volumetric_index] = compound_start;
next_volumetric_index = (next_volumetric_index + 1) % max_num_compounds;
compound_num += 1;
}
for (int i =0; i < hits; i++) {
if (result.has_hit) {
break;
}
// find encounters in order
float min_factor = max_factor;
uint min_index = 0;
for (int j = 0; j < hits; j++) {
if (hit_factors[j] < min_factor) {
min_factor = hit_factors[j];
min_index = j;
}
}
// set up the compound
uint compound_start = compound_starts[min_index];
bool is_x_hit = is_x_hits[min_index];
bool is_y_hit = is_y_hits[min_index];
bool is_z_hit = is_z_hits[min_index];
uint oct_tree_index = compounds[compound_start + 8];
uint compound_grid_size = compounds[compound_start];
float compound_scale = uintBitsToFloat(compounds[compound_start + 1]);
vec3 compound_pos = vec3(uintBitsToFloat(compounds[compound_start + 5]), uintBitsToFloat(compounds[compound_start + 6]), uintBitsToFloat(compounds[compound_start + 7]));
vec3 intersection_pos = pos + hit_factors[min_index] * direction;
// invalidate the min found
hit_factors[min_index] = max_factor;
vec3 oct_tree_pos = vec3(compound_pos);
uint current_size = compound_grid_size;
vec3 mid_point = oct_tree_pos + float(current_size / 2) * vec3(compound_scale, compound_scale, compound_scale);
bool children_open[8] = {true, true, true, true, true, true, true, true};
uint oct_tree_address = oct_tree_index;
// iterate through the oct_tree
uint check_it = 0;
uint max_check_it = 60;
uint prev_child = 0;
uint prev_prev_child = 0;
uvec3 grid_pos = uvec3(0, 0, 0);
uvec3 parent_pos = uvec3(0, 0, 0);
bool has_moved = false;
while (!result.has_hit && check_it < max_check_it) {
// failsafe to get out in case has_moved runs into an accuracy issue
check_it ++;
oct_tree_pos = vec3(grid_pos) * compound_scale + compound_pos;
mid_point = oct_tree_pos + (float(current_size / 2) * vec3(compound_scale, compound_scale, compound_scale));
uint child_index = next_oct_tree_child(mid_point, intersection_pos, children_open);
if (child_index == 0) {
// go up to parent
// if parent is 0 abort, as we have reached the root node again and try to exit it
if (oct_tree_mem[oct_tree_address] == 0) {
break;
}
for (int i=0; i < 8; i++) {
children_open[i] = true;
}
uint parent_index = oct_tree_mem[oct_tree_address];
// check which child we came from
child_index = 1 * uint(oct_tree_address == oct_tree_mem[parent_index + 1]) + 2 * uint(oct_tree_address == oct_tree_mem[parent_index + 2]) + 3 * uint(oct_tree_address == oct_tree_mem[parent_index + 3]) + 4 * uint(oct_tree_address == oct_tree_mem[parent_index + 4]) + 5 * uint(oct_tree_address == oct_tree_mem[parent_index + 5]) + 6 * uint(oct_tree_address == oct_tree_mem[parent_index + 6]) + 7 * uint(oct_tree_address == oct_tree_mem[parent_index + 7]) + 8 * uint(oct_tree_address == oct_tree_mem[parent_index + 8]);
// mark as done to avoid reinvestigating, since intersection_pos is on its edge
children_open[child_index - 1] = false;
prev_prev_child = prev_child;
prev_child = oct_tree_address;
uvec3 back_vec = parent_child_vec(current_size, child_index);
grid_pos -= parent_child_vec(current_size, child_index);
current_size *= 2;
oct_tree_address = parent_index;
} else {
// go down into child
if (current_size == 2) {
// check block if hit break
if (oct_tree_mem[oct_tree_address + child_index] != 0) {
result.has_hit = true;
result.end_color = unpack_color(oct_tree_mem[oct_tree_address + child_index]);
break;
}
} else {
// check if the child has content, else skip to next child of current parent
uint x = oct_tree_mem[oct_tree_address + child_index];
if (oct_tree_mem[x] != 0) {
// change base address and position to child
current_size /= 2;
oct_tree_address = x;
grid_pos += parent_child_vec(current_size, child_index);
for (int i=0; i < 8; i++) {
children_open[i] = true;
}
continue;
}
}
children_open[child_index - 1] = false;
// we did not go deeper or had a hit, so intersection pos needs to be updated
// new intersection pos calc
vec3 offset = vec3(parent_child_vec(current_size / 2, child_index)) * compound_scale;
vec3 low = oct_tree_pos + offset;
float x_border = low.x + float((compound_scale * current_size / 2) * uint(x_pos));
float y_border = low.y + float((compound_scale * current_size / 2) * uint(y_pos));
float z_border = low.z + float((compound_scale * current_size / 2) * uint(z_pos));
if (!x_null) {
x_factor = (x_border - pos.x) / direction.x;
if (x_factor <= 0.0) {
x_factor = max_factor;
}
} else {
x_factor = max_factor;
}
if (!y_null) {
y_factor = (y_border - pos.y) / direction.y;
if (y_factor <= 0.0) {
y_factor = max_factor;
}
} else {
y_factor = max_factor;
}
if (!z_null) {
z_factor = (z_border - pos.z) / direction.z;
if (z_factor <= 0.0) {
z_factor = max_factor;
}
} else {
z_factor = max_factor;
}
float smallest_factor = min(min(x_factor, y_factor), z_factor);
if (x_factor == smallest_factor) {
is_x_hit = true;
is_y_hit = false;
is_z_hit = false;
}
if (y_factor == smallest_factor) {
is_x_hit = false;
is_y_hit = true;
is_z_hit = false;
}
if (z_factor == smallest_factor) {
is_x_hit = false;
is_y_hit = false;
is_z_hit = true;
}
// move a bit further to fully enter the next quadrant
smallest_factor += overstep;
//has_moved = length(intersection_pos - (pos + smallest_factor * direction)) >= 0.00001;
has_moved = intersection_pos != (pos + smallest_factor * direction);
intersection_pos = pos + smallest_factor * direction;
}
}
uint hit_facing = uint(is_x_hit) * (2 + uint(x_pos)) + uint(is_y_hit) * (4 + uint(y_pos)) + uint(is_z_hit && !z_pos);
//result.has_hit = true;
result.end_pos = intersection_pos;
result.end_facing = hit_facing;
result.end_volume = volume_index;
result.end_direction = direction;
}
if (result.has_hit) {
break;
}
float x_border = volume_pos_x + float((scene_info.infos[volume_index + 3]) * uint(x_pos)) * volume_scale - 0.5 * volume_scale;
float y_border = volume_pos_y + float((scene_info.infos[volume_index + 4]) * uint(y_pos)) * volume_scale - 0.5 * volume_scale;
float z_border = volume_pos_z + float((scene_info.infos[volume_index + 5]) * uint(z_pos)) * volume_scale - 0.5 * volume_scale;
@ -267,12 +627,18 @@ Tracing trace_ray(uint volume_start, vec3 starting_pos, vec3 start_direction, fl
if (!x_null) {
x_factor = (x_border - pos.x) / direction.x;
} else {
x_factor = max_factor;
}
if (!y_null) {
y_factor = (y_border - pos.y) / direction.y;
} else {
y_factor = max_factor;
}
if (!z_null) {
z_factor = (z_border - pos.z) / direction.z;
} else {
z_factor = max_factor;
}
if ((x_factor >= max_factor) && (y_factor >= max_factor) && (z_factor >= max_factor)) {
@ -369,6 +735,11 @@ Tracing trace_ray(uint volume_start, vec3 starting_pos, vec3 start_direction, fl
z_pos = direction.z > 0.0;
z_null = (direction.z == 0.0);
// clear volumetrics for reevaluation
for (int i=0; i < max_num_compounds; i++) {
done_volumetrics[i] = 0;
}
} else {
break;
}
@ -437,8 +808,7 @@ vec3 get_lighting_color(uint volume_start, vec3 starting_pos, vec4 orig_color_sa
return color_sum;
}
vec3 diffuse_tracing(uint volume_start, uvec2 raster_pos, vec3 pos, uint f) {
uvec4 color_roughness = sample_color_from_scene_info(volume_start, raster_pos, f);
vec3 diffuse_tracing(uint volume_start, uvec4 color_roughness, vec3 pos, uint f) {
vec4 orig_color_sample = vec4(float(color_roughness.x) / 255.0, float(color_roughness.y) / 255.0, float(color_roughness.z) / 255.0, 1);
vec3 normal = normal_for_facing(f);
@ -459,10 +829,6 @@ vec3 diffuse_tracing(uint volume_start, uvec2 raster_pos, vec3 pos, uint f) {
return color_sum;
}
vec3 diffuse_tracing(uint volume_start, vec2 raster_pos, vec3 pos, uint f) {
return diffuse_tracing(volume_start, uvec2(uint(floor(raster_pos.x)), uint(floor(raster_pos.y))), pos, f);
}
vec3 clamp_to_volume(uint volume_start, vec3 position) {
float volume_pos_x = uintBitsToFloat(scene_info.infos[volume_start + 0]);
float volume_pos_y = uintBitsToFloat(scene_info.infos[volume_start + 1]);
@ -492,7 +858,7 @@ vec3 add_reflection(vec3 view_vector, uint f, uint volume_start, vec3 pos, uvec4
vec3 reflection_direction = reflect_vector(view_vector, f);
Tracing reflection_tracing = trace_ray(volume_start, pos, reflection_direction, pos_infinity, true);
if (reflection_tracing.has_hit || reflection_tracing.has_transparent_hit) {
vec3 color_from_reflection = diffuse_tracing(reflection_tracing.end_volume, reflection_tracing.end_raster, reflection_tracing.end_pos, reflection_tracing.end_facing) * orig_color_sample;
vec3 color_from_reflection = diffuse_tracing(reflection_tracing.end_volume, reflection_tracing.end_color, reflection_tracing.end_pos, reflection_tracing.end_facing) * orig_color_sample;
color_sum = color_sum * (1.0 - reflectivity) + color_from_reflection * reflectivity;
}
}
@ -509,13 +875,15 @@ void main() {
uint orig_neighbor = sample_neighbor_from_scene_info(fragVolumeStart, clamped_raster_pos, facing);
if (orig_neighbor != 0) {
vec3 color_direct = diffuse_tracing(fragVolumeStart, clamped_raster_pos, clamped_pos, facing);
vec3 color_direct = diffuse_tracing(fragVolumeStart, color_roughness, clamped_pos, facing);
Tracing t = trace_ray(fragVolumeStart, ubo.camera_pos, clamped_pos - ubo.camera_pos, pos_infinity, false);
float opacity = float(color_roughness.w) / 255.0;
vec3 color_seen_through;
if (t.has_hit) {
color_seen_through = diffuse_tracing(t.end_volume, t.end_raster, t.end_pos, t.end_facing) * orig_color_sample * t.color_mul;
//color_seen_through = vec3(float(t.end_color.x) / 255.0, float(t.end_color.y) / 255.0, float(t.end_color.z) / 255.0);
color_seen_through = diffuse_tracing(t.end_volume, t.end_color, t.end_pos, t.end_facing) * orig_color_sample * t.color_mul;
color_seen_through = add_reflection(t.end_direction, t.end_facing, t.end_volume, t.end_pos, t.end_color, color_seen_through);
}
else {
@ -525,12 +893,14 @@ void main() {
color_direct = add_reflection(normalize(clamped_pos - ubo.camera_pos), facing, fragVolumeStart, clamped_pos, color_roughness, color_direct);
color_sum = opacity * color_direct + (1.0 - opacity) * color_seen_through;
//color_sum = color_seen_through;
}
else {
color_sum = diffuse_tracing(fragVolumeStart, clamped_raster_pos, clamped_pos, facing);
color_sum = diffuse_tracing(fragVolumeStart, color_roughness, clamped_pos, facing);
color_sum = add_reflection(normalize(clamped_pos - ubo.camera_pos), facing, fragVolumeStart, clamped_pos, color_roughness, color_sum);
}
outColor = vec4(color_sum, 1.0);
}
}

View file

@ -0,0 +1,51 @@
#version 450
layout(location = 0) in vec2 fragRasterPos;
layout(location = 1) flat in uint fragVolumeStart;
layout(location = 2) in vec3 origPosition;
layout(location = 3) flat in uint facing;
layout(location = 4) flat in uvec2 minRasterPos;
layout(location = 5) flat in uvec2 maxRasterPos;
layout(location = 0) out vec4 outColor;
#include rt_lib.frag
void main() {
vec3 clamped_pos = clamp_to_volume(fragVolumeStart, origPosition);
vec2 clamped_raster_pos = clamp_to_quad(fragRasterPos, minRasterPos, maxRasterPos);
uvec4 color_roughness = sample_color_from_scene_info(fragVolumeStart, clamped_raster_pos, facing);
vec3 orig_color_sample = vec3(float(color_roughness.x) / 255.0, float(color_roughness.y) / 255.0, float(color_roughness.z) / 255.0);
vec3 color_sum;
uint orig_neighbor = sample_neighbor_from_scene_info(fragVolumeStart, clamped_raster_pos, facing);
if (orig_neighbor != 0) {
vec3 color_direct = diffuse_tracing(fragVolumeStart, color_roughness, clamped_pos, facing);
Tracing t = trace_ray(fragVolumeStart, ubo.camera_pos, clamped_pos - ubo.camera_pos, pos_infinity, false);
float opacity = float(color_roughness.w) / 255.0;
vec3 color_seen_through;
if (t.has_hit) {
//color_seen_through = vec3(float(t.end_color.x) / 255.0, float(t.end_color.y) / 255.0, float(t.end_color.z) / 255.0);
color_seen_through = diffuse_tracing(t.end_volume, t.end_color, t.end_pos, t.end_facing) * orig_color_sample * t.color_mul;
color_seen_through = add_reflection(t.end_direction, t.end_facing, t.end_volume, t.end_pos, t.end_color, color_seen_through);
}
else {
// Todo: hit sky box
color_seen_through = vec3(0.0, 0.0, 0.0);
}
color_direct = add_reflection(normalize(clamped_pos - ubo.camera_pos), facing, fragVolumeStart, clamped_pos, color_roughness, color_direct);
color_sum = opacity * color_direct + (1.0 - opacity) * color_seen_through;
//color_sum = color_seen_through;
}
else {
color_sum = diffuse_tracing(fragVolumeStart, color_roughness, clamped_pos, facing);
color_sum = add_reflection(normalize(clamped_pos - ubo.camera_pos), facing, fragVolumeStart, clamped_pos, color_roughness, color_sum);
}
outColor = vec4(color_sum, 1.0);
}

View file

@ -27,7 +27,7 @@ pub struct AppData {
pub pipeline_compute_grow_one: vk::Pipeline,
pub pipeline_compute_grow_two: vk::Pipeline,
pub pipeline_compute_grow_three: vk::Pipeline,
pub pipeline_compute_combine: vk::Pipeline,
pub pipeline_compute_mempos: vk::Pipeline,
pub framebuffers: Vec<vk::Framebuffer>,
pub command_pool: vk::CommandPool,
@ -60,6 +60,9 @@ pub struct AppData {
pub compute_out_storage_buffers_size_three: Vec<vk::Buffer>,
pub compute_out_storage_buffers_memory_size_three: Vec<vk::DeviceMemory>,
pub compute_out_storage_buffers_oct_tree: Vec<vk::Buffer>,
pub compute_out_storage_buffers_memory_oct_tree: Vec<vk::DeviceMemory>,
pub compute_out_cuboid_buffers: Vec<vk::Buffer>,
pub compute_out_cuboid_buffers_memory: Vec<vk::DeviceMemory>,
@ -92,8 +95,11 @@ pub struct AppData {
pub compute_task_one_size: usize,
pub compute_task_one_out_buffer_size: u64,
pub compute_task_one_out_size: u64,
pub compute_task_oct_tree_size: u64,
pub compute_task_oct_tree_nodes: u64,
// values passed to shader
pub num_lights_per_volume: u32,
pub num_compound_per_volume: u32,
pub min_light_weight: f32,
pub max_iterations_per_light: u32,
pub diffuse_raster_steps: u32,

View file

@ -206,13 +206,13 @@ pub unsafe fn create_descriptor_set_layout(
.binding(2)
.descriptor_type(vk::DescriptorType::STORAGE_BUFFER)
.descriptor_count(1)
.stage_flags(vk::ShaderStageFlags::FRAGMENT);
.stage_flags(vk::ShaderStageFlags::FRAGMENT | vk::ShaderStageFlags::COMPUTE);
let storage_binding_compute_in = vk::DescriptorSetLayoutBinding::builder()
.binding(3)
.descriptor_type(vk::DescriptorType::STORAGE_BUFFER)
.descriptor_count(1)
.stage_flags(vk::ShaderStageFlags::COMPUTE);
.stage_flags(vk::ShaderStageFlags::COMPUTE | vk::ShaderStageFlags::FRAGMENT);
let storage_binding_compute_out_color = vk::DescriptorSetLayoutBinding::builder()
.binding(4)
@ -250,7 +250,13 @@ pub unsafe fn create_descriptor_set_layout(
.descriptor_count(1)
.stage_flags(vk::ShaderStageFlags::FRAGMENT | vk::ShaderStageFlags::COMPUTE);
let bindings = &[ubo_binding, sampler_binding, storage_binding_render, storage_binding_compute_in, storage_binding_compute_out_color, storage_binding_compute_cuboid_out, storage_binding_compute_cuboid_index_out, storage_binding_compute_out_size_two, storage_binding_compute_out_size_three, storage_binding_compute_out_size_transparent];
let storage_binding_compute_out_oct_tree = vk::DescriptorSetLayoutBinding::builder()
.binding(10)
.descriptor_type(vk::DescriptorType::STORAGE_BUFFER)
.descriptor_count(1)
.stage_flags(vk::ShaderStageFlags::FRAGMENT | vk::ShaderStageFlags::COMPUTE);
let bindings = &[ubo_binding, sampler_binding, storage_binding_render, storage_binding_compute_in, storage_binding_compute_out_color, storage_binding_compute_cuboid_out, storage_binding_compute_cuboid_index_out, storage_binding_compute_out_size_two, storage_binding_compute_out_size_three, storage_binding_compute_out_size_transparent, storage_binding_compute_out_oct_tree];
let info = vk::DescriptorSetLayoutCreateInfo::builder()
.bindings(bindings);
@ -311,6 +317,9 @@ pub unsafe fn create_storage_buffers(
data.compute_out_cuboid_index_buffers.clear();
data.compute_out_cuboid_index_buffers_memory.clear();
data.compute_out_storage_buffers_oct_tree.clear();
data.compute_out_storage_buffers_memory_oct_tree.clear();
for _ in 0..data.swapchain_images.len() {
let (storage_buffer, storage_buffer_memory) = create_buffer(
instance,
@ -363,7 +372,7 @@ pub unsafe fn create_storage_buffers(
instance,
device,
data,
(size_of::<u32>() * 2) as u64 * data.compute_task_one_out_buffer_size.max(1),
(size_of::<u32>()) as u64 * data.compute_task_one_out_buffer_size.max(1),
vk::BufferUsageFlags::STORAGE_BUFFER,
vk::MemoryPropertyFlags::DEVICE_LOCAL,
)?;
@ -375,7 +384,7 @@ pub unsafe fn create_storage_buffers(
instance,
device,
data,
(size_of::<u32>() * 3) as u64 * data.compute_task_one_out_buffer_size.max(1),
(size_of::<u32>()) as u64 * data.compute_task_one_out_buffer_size.max(1),
vk::BufferUsageFlags::STORAGE_BUFFER,
vk::MemoryPropertyFlags::DEVICE_LOCAL,
)?;
@ -383,6 +392,18 @@ pub unsafe fn create_storage_buffers(
data.compute_out_storage_buffers_size_three.push(storage_buffer);
data.compute_out_storage_buffers_memory_size_three.push(storage_buffer_memory);
let (storage_buffer, storage_buffer_memory) = create_buffer(
instance,
device,
data,
(size_of::<u32>()) as u64 * data.compute_task_oct_tree_size.max(1),
vk::BufferUsageFlags::STORAGE_BUFFER,
vk::MemoryPropertyFlags::DEVICE_LOCAL,
)?;
data.compute_out_storage_buffers_oct_tree.push(storage_buffer);
data.compute_out_storage_buffers_memory_oct_tree.push(storage_buffer_memory);
let (storage_buffer, storage_buffer_memory) = create_buffer(
instance,
device,
@ -551,8 +572,12 @@ pub unsafe fn create_descriptor_pool(device: &Device, data: &mut app_data::AppDa
let compute_out_storage_transparent_size = vk::DescriptorPoolSize::builder()
.type_(vk::DescriptorType::STORAGE_BUFFER)
.descriptor_count(data.swapchain_images.len() as u32);
let compute_out_storage_oct_tree = vk::DescriptorPoolSize::builder()
.type_(vk::DescriptorType::STORAGE_BUFFER)
.descriptor_count(data.swapchain_images.len() as u32);
let pool_sizes = &[ubo_size, sampler_size, render_storage_size, compute_in_storage_size, compute_out_storage_color_size, compute_out_cuboid_size, compute_out_cuboid_index_size, compute_out_storage_size_two_size, compute_out_storage_size_three_size, compute_out_storage_transparent_size];
let pool_sizes = &[ubo_size, sampler_size, render_storage_size, compute_in_storage_size, compute_out_storage_color_size, compute_out_cuboid_size, compute_out_cuboid_index_size, compute_out_storage_size_two_size, compute_out_storage_size_three_size, compute_out_storage_transparent_size, compute_out_storage_oct_tree];
let info = vk::DescriptorPoolCreateInfo::builder()
.pool_sizes(pool_sizes)
.max_sets(data.swapchain_images.len() as u32);
@ -625,7 +650,7 @@ pub unsafe fn create_descriptor_sets(device: &Device, data: &mut app_data::AppDa
let info = vk::DescriptorBufferInfo::builder()
.buffer(data.compute_out_storage_buffers_color[i])
.offset(0)
.range((size_of::<u32>() * 3) as u64 * data.compute_task_one_out_buffer_size.max(1));
.range((size_of::<u32>()) as u64 * data.compute_task_one_out_buffer_size.max(1));
let storage_info = &[info];
let storage_write_compute_out_color = vk::WriteDescriptorSet::builder()
@ -638,7 +663,7 @@ pub unsafe fn create_descriptor_sets(device: &Device, data: &mut app_data::AppDa
let info = vk::DescriptorBufferInfo::builder()
.buffer(data.compute_out_storage_buffers_size_two[i])
.offset(0)
.range((size_of::<u32>() * 2) as u64 * data.compute_task_one_out_buffer_size.max(1));
.range((size_of::<u32>()) as u64 * data.compute_task_one_out_buffer_size.max(1));
let storage_info = &[info];
let storage_write_compute_out_size_two = vk::WriteDescriptorSet::builder()
@ -651,7 +676,7 @@ pub unsafe fn create_descriptor_sets(device: &Device, data: &mut app_data::AppDa
let info = vk::DescriptorBufferInfo::builder()
.buffer(data.compute_out_storage_buffers_size_three[i])
.offset(0)
.range((size_of::<u32>() * 3) as u64 * data.compute_task_one_out_buffer_size.max(1));
.range((size_of::<u32>()) as u64 * data.compute_task_one_out_buffer_size.max(1));
let storage_info = &[info];
let storage_write_compute_out_size_three = vk::WriteDescriptorSet::builder()
@ -664,7 +689,7 @@ pub unsafe fn create_descriptor_sets(device: &Device, data: &mut app_data::AppDa
let info = vk::DescriptorBufferInfo::builder()
.buffer(data.compute_out_storage_buffers_transparent[i])
.offset(0)
.range((size_of::<bool>() * 3) as u64 * data.compute_task_one_out_buffer_size.max(1));
.range((size_of::<bool>()) as u64 * data.compute_task_one_out_buffer_size.max(1));
let storage_info = &[info];
let storage_write_compute_out_transparent = vk::WriteDescriptorSet::builder()
@ -674,6 +699,19 @@ pub unsafe fn create_descriptor_sets(device: &Device, data: &mut app_data::AppDa
.descriptor_type(vk::DescriptorType::STORAGE_BUFFER)
.buffer_info(storage_info);
let info = vk::DescriptorBufferInfo::builder()
.buffer(data.compute_out_storage_buffers_oct_tree[i])
.offset(0)
.range((size_of::<u32>()) as u64 * data.compute_task_oct_tree_size.max(1));
let storage_info = &[info];
let storage_write_compute_out_oct_tree = vk::WriteDescriptorSet::builder()
.dst_set(data.descriptor_sets[i])
.dst_binding(10)
.dst_array_element(0)
.descriptor_type(vk::DescriptorType::STORAGE_BUFFER)
.buffer_info(storage_info);
let info = vk::DescriptorBufferInfo::builder()
.buffer(data.compute_out_cuboid_buffers[i])
.offset(0)
@ -702,7 +740,7 @@ pub unsafe fn create_descriptor_sets(device: &Device, data: &mut app_data::AppDa
device.update_descriptor_sets(
&[ubo_write, sampler_write, storage_write_render, storage_write_compute_in, storage_write_compute_out_color, storage_write_compute_cuboid_out, storage_write_compute_cuboid_index_out, storage_write_compute_out_size_two, storage_write_compute_out_size_three, storage_write_compute_out_transparent],
&[ubo_write, sampler_write, storage_write_render, storage_write_compute_in, storage_write_compute_out_color, storage_write_compute_cuboid_out, storage_write_compute_cuboid_index_out, storage_write_compute_out_size_two, storage_write_compute_out_size_three, storage_write_compute_out_transparent, storage_write_compute_out_oct_tree],
&[] as &[vk::CopyDescriptorSet],
);
}

View file

@ -85,14 +85,6 @@ pub unsafe fn create_command_buffers(device: &Device, data: &mut app_data::AppDa
.size(vk::WHOLE_SIZE as u64)
.build();
device.cmd_pipeline_barrier(*command_buffer,
vk::PipelineStageFlags::COMPUTE_SHADER,
vk::PipelineStageFlags::VERTEX_INPUT,
vk::DependencyFlags::DEVICE_GROUP,
&[] as &[vk::MemoryBarrier],
&[buffer_memory_barrier_index, buffer_memory_barrier_vertex],
&[] as &[vk::ImageMemoryBarrier]);
// compute storage barrier
let buffer_memory_barrier_color = vk::BufferMemoryBarrier::builder()
.buffer(data.compute_out_storage_buffers_color[i])
@ -155,7 +147,14 @@ pub unsafe fn create_command_buffers(device: &Device, data: &mut app_data::AppDa
&[data.descriptor_sets[i]],
&[]);
device.cmd_dispatch(*command_buffer, (data.compute_task_one_size as f64 / 16.0).ceil() as u32, 1, 1);
device.cmd_dispatch(*command_buffer, ((data.compute_task_one_size / 2) as f64 / 16.0).ceil() as u32, 1, 1);
let buffer_memory_barrier_in = vk::BufferMemoryBarrier::builder()
.buffer(data.compute_out_storage_buffers_size_three[i])
.src_access_mask(vk::AccessFlags::SHADER_READ)
.dst_access_mask(vk::AccessFlags::SHADER_WRITE)
.size(vk::WHOLE_SIZE as u64)
.build();
let buffer_memory_barrier_out = vk::BufferMemoryBarrier::builder()
.buffer(data.compute_out_storage_buffers_size_two[i])
@ -169,7 +168,7 @@ pub unsafe fn create_command_buffers(device: &Device, data: &mut app_data::AppDa
vk::PipelineStageFlags::COMPUTE_SHADER,
vk::DependencyFlags::DEVICE_GROUP,
&[] as &[vk::MemoryBarrier],
&[buffer_memory_barrier_out],
&[buffer_memory_barrier_in, buffer_memory_barrier_out],
&[] as &[vk::ImageMemoryBarrier]);
// grow z axis
@ -184,7 +183,14 @@ pub unsafe fn create_command_buffers(device: &Device, data: &mut app_data::AppDa
&[data.descriptor_sets[i]],
&[]);
device.cmd_dispatch(*command_buffer, (data.compute_task_one_size as f64 / 16.0).ceil() as u32, 1, 1);
device.cmd_dispatch(*command_buffer, ((data.compute_task_one_size / 2) as f64 / 16.0).ceil() as u32, 1, 1);
let buffer_memory_barrier_in = vk::BufferMemoryBarrier::builder()
.buffer(data.compute_out_storage_buffers_size_two[i])
.src_access_mask(vk::AccessFlags::SHADER_READ)
.dst_access_mask(vk::AccessFlags::SHADER_WRITE)
.size(vk::WHOLE_SIZE as u64)
.build();
let buffer_memory_barrier_out = vk::BufferMemoryBarrier::builder()
.buffer(data.compute_out_storage_buffers_size_three[i])
@ -198,12 +204,12 @@ pub unsafe fn create_command_buffers(device: &Device, data: &mut app_data::AppDa
vk::PipelineStageFlags::COMPUTE_SHADER,
vk::DependencyFlags::DEVICE_GROUP,
&[] as &[vk::MemoryBarrier],
&[buffer_memory_barrier_out],
&[buffer_memory_barrier_in, buffer_memory_barrier_out],
&[] as &[vk::ImageMemoryBarrier]);
// combine element
// calculate mem size
device.cmd_bind_pipeline(
*command_buffer, vk::PipelineBindPoint::COMPUTE, data.pipeline_compute_combine);
*command_buffer, vk::PipelineBindPoint::COMPUTE, data.pipeline_compute_mempos);
device.cmd_bind_descriptor_sets(
*command_buffer,
@ -213,10 +219,10 @@ pub unsafe fn create_command_buffers(device: &Device, data: &mut app_data::AppDa
&[data.descriptor_sets[i]],
&[]);
device.cmd_dispatch(*command_buffer, (data.compute_task_one_size as f64 / 16.0).ceil() as u32, 1, 1);
device.cmd_dispatch(*command_buffer, (data.compute_task_oct_tree_nodes as f64 / 16.0).ceil() as u32, 1, 1);
let buffer_memory_barrier_out = vk::BufferMemoryBarrier::builder()
.buffer(data.render_storage_buffers[i])
.buffer(data.compute_out_storage_buffers_oct_tree[i])
.src_access_mask(vk::AccessFlags::SHADER_WRITE)
.dst_access_mask(vk::AccessFlags::SHADER_READ)
.size(vk::WHOLE_SIZE as u64)
@ -229,6 +235,14 @@ pub unsafe fn create_command_buffers(device: &Device, data: &mut app_data::AppDa
&[] as &[vk::MemoryBarrier],
&[buffer_memory_barrier_out],
&[] as &[vk::ImageMemoryBarrier]);
device.cmd_pipeline_barrier(*command_buffer,
vk::PipelineStageFlags::COMPUTE_SHADER,
vk::PipelineStageFlags::VERTEX_INPUT,
vk::DependencyFlags::DEVICE_GROUP,
&[] as &[vk::MemoryBarrier],
&[buffer_memory_barrier_index, buffer_memory_barrier_vertex],
&[] as &[vk::ImageMemoryBarrier]);
}
// start render pass
let clear_values = &[color_clear_value, depth_clear_value];

View file

@ -195,6 +195,7 @@ impl App {
let mut data = app_data::AppData::default();
data.use_geometry_shader = false;
data.num_lights_per_volume = 5;
data.num_compound_per_volume = 5;
data.min_light_weight = 0.0001;
data.max_iterations_per_light = 20;
data.diffuse_raster_steps = 0;
@ -281,7 +282,7 @@ impl App {
self.update_uniform_buffer(image_index)?;
let time = self.appstart.elapsed().as_secs_f32() / 1.0;
self.scene_handler.point_lights[0].borrow_mut().set_pos(cgmath::vec3((10.0 + 64.0) as f32 + time.sin() * 2.0, (10.0 + 64.0) as f32 + time.cos() * 2.0, 11.0));
//self.scene_handler.point_lights[0].borrow_mut().set_pos(cgmath::vec3((10.0 + 64.0) as f32 + time.sin() * 2.0, (10.0 + 64.0) as f32 + time.cos() * 2.0, 11.0));
self.synchronized = 0;
if self.synchronized < MAX_FRAMES_IN_FLIGHT {
@ -441,13 +442,20 @@ impl App {
.iter()
.for_each(|m| self.device.free_memory(*m, None));
self.data.compute_out_storage_buffers_size_three
self.data.compute_out_storage_buffers_size_three
.iter()
.for_each(|b| self.device.destroy_buffer(*b, None));
self.data.compute_out_storage_buffers_memory_size_three
.iter()
.for_each(|m| self.device.free_memory(*m, None));
self.data.compute_out_storage_buffers_oct_tree
.iter()
.for_each(|b| self.device.destroy_buffer(*b, None));
self.data.compute_out_storage_buffers_memory_oct_tree
.iter()
.for_each(|m| self.device.free_memory(*m, None));
self.data.compute_out_cuboid_buffers
.iter()
.for_each(|b| self.device.destroy_buffer(*b, None));
@ -474,7 +482,7 @@ impl App {
self.device.destroy_pipeline(self.data.pipeline_compute_grow_one, None);
self.device.destroy_pipeline(self.data.pipeline_compute_grow_two, None);
self.device.destroy_pipeline(self.data.pipeline_compute_grow_three, None);
self.device.destroy_pipeline(self.data.pipeline_compute_combine, None);
self.device.destroy_pipeline(self.data.pipeline_compute_mempos, None);
self.device.destroy_pipeline_layout(self.data.pipeline_layout, None);
self.device.destroy_render_pass(self.data.render_pass, None);
@ -897,13 +905,13 @@ unsafe fn create_pipeline(device: &Device, data: &mut app_data::AppData) -> Resu
.name(b"main\0");
// load the byte data
let compute_bytes = include_bytes!("../shaders/compiled/rt_compute_combine.spv");
let compute_bytes = include_bytes!("../shaders/compiled/rt_compute_mempos.spv");
// create the shaders
let compute_shader_module_combine = create_shader_module(device, &compute_bytes[..])?;
let compute_shader_module_mempos = create_shader_module(device, &compute_bytes[..])?;
//create the shader stage for the compute shader
let compute_stage_combine = vk::PipelineShaderStageCreateInfo::builder()
let compute_stage_mempos = vk::PipelineShaderStageCreateInfo::builder()
.stage(vk::ShaderStageFlags::COMPUTE)
.module(compute_shader_module_combine)
.module(compute_shader_module_mempos)
.name(b"main\0");
// define input assembly and object type. This is altered when using geometry shader
@ -1062,11 +1070,11 @@ unsafe fn create_pipeline(device: &Device, data: &mut app_data::AppData) -> Resu
.stage(compute_stage_grow_three)
.layout(data.pipeline_layout);
let info_compute_combine = vk::ComputePipelineCreateInfo::builder()
.stage(compute_stage_combine)
let info_compute_mempos = vk::ComputePipelineCreateInfo::builder()
.stage(compute_stage_mempos)
.layout(data.pipeline_layout);
let compute_pipelines = device.create_compute_pipelines(vk::PipelineCache::null(), &[info_compute_rasterize, info_compute_grow_one, info_compute_grow_two, info_compute_grow_three, info_compute_combine], None)?.0;
let compute_pipelines = device.create_compute_pipelines(vk::PipelineCache::null(), &[info_compute_rasterize, info_compute_grow_one, info_compute_grow_two, info_compute_grow_three, info_compute_mempos], None)?.0;
data.pipeline_cube = pipelines[0];
data.pipeline_cuboid = pipelines[1];
@ -1076,7 +1084,7 @@ unsafe fn create_pipeline(device: &Device, data: &mut app_data::AppData) -> Resu
data.pipeline_compute_grow_one = compute_pipelines[1];
data.pipeline_compute_grow_two = compute_pipelines[2];
data.pipeline_compute_grow_three = compute_pipelines[3];
data.pipeline_compute_combine = compute_pipelines[4];
data.pipeline_compute_mempos = compute_pipelines[4];
device.destroy_shader_module(vert_shader_module_cube, None);
device.destroy_shader_module(geo_shader_module_cube, None);
@ -1093,7 +1101,7 @@ unsafe fn create_pipeline(device: &Device, data: &mut app_data::AppData) -> Resu
device.destroy_shader_module(compute_shader_module_grow_one, None);
device.destroy_shader_module(compute_shader_module_grow_two, None);
device.destroy_shader_module(compute_shader_module_grow_three, None);
device.destroy_shader_module(compute_shader_module_combine, None);
device.destroy_shader_module(compute_shader_module_mempos, None);
Ok(())
}

View file

@ -13,6 +13,7 @@ use crate::scene::oct_tree::OctTree;
use super::memorizable::Memorizable;
use super::light::LightSource;
use super::light::PointLight;
use super::volumetrics::ShapeComposition;
use super::AppData;
use super::LightsIter;
use super::Scene;
@ -1063,10 +1064,10 @@ impl EmptyVolume {
let mut out_index = vec![];
for index in 0..weighted_indices.len() {
out_index.push(weighted_indices[weighted_indices.len() - (index + 1)].1 as u32);
if out_index.len() == light_number as usize {
break;
}
out_index.push(weighted_indices[weighted_indices.len() - (index + 1)].1 as u32);
}
while out_index.len() < light_number as usize {
out_index.push(0);
@ -1074,6 +1075,31 @@ impl EmptyVolume {
out_index
}
pub fn select_compounds(&self, compounds: &Vec<Rc<RefCell<ShapeComposition>>>, compound_number: u32) -> Vec<u32> {
let mut weighted_indices = vec![];
for compound in compounds {
let bbox_low = compound.borrow().bbox_low;
let bbox_high = compound.borrow().bbox_high;
let diag = bbox_high - bbox_low;
if (self.real_position.x < bbox_high.x || self.real_position.y < bbox_high.y || self.real_position.z < bbox_high.z) && (bbox_low.x < self.real_position.x + self.size_x as f32 || bbox_low.y < self.real_position.y + self.size_y as f32 || bbox_low.z < self.real_position.z + self.size_z as f32) {
let le = diag.dot(diag);
weighted_indices.push((le, compound.borrow().get_memory_start()));
}
}
weighted_indices.sort_by(|a, b| a.0.partial_cmp(&b.0).unwrap());
let mut out_index = vec![];
for index in 0..weighted_indices.len() {
if out_index.len() == compound_number as usize {
break;
}
out_index.push(weighted_indices[weighted_indices.len() - (index + 1)].1 as u32);
}
while out_index.len() < compound_number as usize {
out_index.push(0);
}
out_index
}
pub fn combine_results(first: &Rc<RefCell<OctTree<Cube>>>,first_neighbors: &Rc<OctTree<Rc<RefCell<EmptyVolume>>>>, second: &Rc<RefCell<OctTree<Cube>>>, second_neighbors: &Rc<OctTree<Rc<RefCell<EmptyVolume>>>>, facing: vertex::Facing) {
let mut first_start;
let mut second_start;
@ -1261,6 +1287,7 @@ impl Memorizable for EmptyVolume {
mem_size += 12; //color/roughness buffer sizes, 2 values each
mem_size += 12; //neighbor buffer sizes, 2 values each
mem_size += 1; //scale of the volume, 1 float
mem_size += data.num_compound_per_volume; // compound references
// this covers full color and roughness
mem_size += (self.color_top.len() as u32).max(1);
@ -1296,12 +1323,20 @@ impl Memorizable for EmptyVolume {
mem_index += 1;
v[mem_index] = self.size_z as u32;
mem_index += 1;
//Todo: insert lights
//insert lights
let selected_lights = self.select_lights(scene.get_light_iter(), data.num_lights_per_volume, data.min_light_weight);
for light in selected_lights {
v[mem_index] = light;
mem_index += 1;
}
// compound references
let selected_compounds = self.select_compounds(&scene.volumetrics, data.num_compound_per_volume);
for compound in selected_compounds {
v[mem_index] = compound;
mem_index += 1;
}
//color/roughness buffer sizes, 2 values each
if self.color_top.len() > 1 {
v[mem_index] = self.size_x as u32;

View file

@ -57,7 +57,7 @@ pub fn generate_test_scene(scene: &mut Scene, data: &mut AppData) -> Result<(Poi
let shade = (rng.gen_range(0..25) as f32) / 100.0;
let cube = Cube {
pos: vec3(10.0, 10.0, 10.0),
color: vec3(0.0, 0.0, 0.9),
color: vec3(0.9, 0.9, 0.9),
tex_coord: vec2(0.0, 0.0),
transparent: true,
roughness: 32,
@ -66,7 +66,7 @@ pub fn generate_test_scene(scene: &mut Scene, data: &mut AppData) -> Result<(Poi
let cube = Cube {
pos: vec3(10.0, 10.0, 9.0),
color: vec3(0.0, 0.0, 0.9),
color: vec3(0.9, 0.9, 0.9),
tex_coord: vec2(0.0, 0.0),
transparent: true,
roughness: 32,
@ -93,8 +93,8 @@ pub fn generate_test_scene(scene: &mut Scene, data: &mut AppData) -> Result<(Poi
oct_tree2.set_cube(cube.clone());
scene.point_lights.push(Rc::new(RefCell::new(PointLight::init(vec3(11.0 + grid_size as f32, 11.0 + grid_size as f32, 11.0) * scale, vec3(2.0, 2.0, 2.0)))));
scene.point_lights.push(Rc::new(RefCell::new(PointLight::init(vec3(9.0 + grid_size as f32, 9.0 + grid_size as f32, 11.0) * scale, vec3(0.5, 0.5, 0.5)))));
scene.directional_lights.push(Rc::new(RefCell::new(DirectionalLight::init(vec3(1.0, 1.0, -1.0), vec3(0.1, 0.1, 0.1)))));
//scene.point_lights.push(Rc::new(RefCell::new(PointLight::init(vec3(9.0 + grid_size as f32, 9.0 + grid_size as f32, 11.0) * scale, vec3(0.5, 0.5, 0.5)))));
//scene.directional_lights.push(Rc::new(RefCell::new(DirectionalLight::init(vec3(1.0, 1.0, -1.0), vec3(0.1, 0.1, 0.1)))));
let cube = Cuboid {
pos: vec3(11.0 + grid_size as f32, 11.0 + grid_size as f32, 11.0) * scale,
@ -112,13 +112,16 @@ pub fn generate_test_scene(scene: &mut Scene, data: &mut AppData) -> Result<(Poi
size: Vector3 {x: 0.5, y: 0.5, z: 0.5} * scale
};
let index = scene.sized_vertices.len();
cube.draw(&data.topology, index, scene);
//cube.draw(&data.topology, index, scene);
let tree_ref_one = Rc::new(RefCell::new(oct_tree1.clone()));
let tree_ref_two = Rc::new(RefCell::new(oct_tree2.clone()));
scene.oct_trees = vec![vec![vec![tree_ref_two.clone(), tree_ref_two.clone(), tree_ref_two.clone()], vec![tree_ref_two.clone(), tree_ref_one.clone(), tree_ref_two.clone()], vec![tree_ref_two.clone(), tree_ref_two.clone(), tree_ref_two.clone()]], vec![vec![tree_ref_two.clone(), tree_ref_two.clone(), tree_ref_two.clone()], vec![tree_ref_two.clone(), tree_ref_one.clone(), tree_ref_two.clone()], vec![tree_ref_two.clone(), tree_ref_two.clone(), tree_ref_two.clone()]]];
//scene.oct_trees = vec![vec![vec![tree_ref_two.clone(), tree_ref_two.clone(), tree_ref_two.clone()], vec![tree_ref_two.clone(), tree_ref_one.clone(), tree_ref_two.clone()], vec![tree_ref_two.clone(), tree_ref_two.clone(), tree_ref_two.clone()]], vec![vec![tree_ref_two.clone(), tree_ref_two.clone(), tree_ref_two.clone()], vec![tree_ref_two.clone(), tree_ref_one.clone(), tree_ref_two.clone()], vec![tree_ref_two.clone(), tree_ref_two.clone(), tree_ref_two.clone()]]];
scene.oct_trees = vec![vec![vec![tree_ref_two.clone(), tree_ref_two.clone(), tree_ref_two.clone()], vec![tree_ref_two.clone(), tree_ref_one.clone(), tree_ref_two.clone()], vec![tree_ref_two.clone(), tree_ref_two.clone(), tree_ref_two.clone()]]];
let mut comp = ShapeComposition::new(64);
//comp.included_shapes.push(Rc::new(RefCell::new(Rect::new(Vector3 { x: 5.0 + grid_size as f32, y: 5.0 + grid_size as f32, z: 10.0 }, Vector3 { x: 0.0, y: 0.0, z: 0.0 }, Vector3 { x: 5.0, y: 5.0, z: 5.0 },Vector3 { x: 0, y: 0, z: 255 }, 64, false))));
comp.included_shapes.push(Rc::new(RefCell::new(Sphere::new(Vector3 { x: 5.0 + grid_size as f32, y: 5.0 + grid_size as f32, z: 10.0 }, Vector3 { x: 0.0, y: 0.0, z: 0.0 }, 2.0, Vector3 { x: 0, y: 255, z: 0 }, 64, false))));
comp.included_shapes.push(Rc::new(RefCell::new(Sphere::new(Vector3 { x: 5.0 + grid_size as f32, y: 5.0 + grid_size as f32, z: 10.0 }, Vector3 { x: 0.0, y: 0.0, z: 0.0 }, 2.5, Vector3 { x: 255, y: 0, z: 0 }, 64, false))));
comp.excluded_shapes.push(Rc::new(RefCell::new(Sphere::new(Vector3 { x: 5.0 + grid_size as f32, y: 5.0 + grid_size as f32, z: 11.5 }, Vector3 { x: 0.0, y: 0.0, z: 0.0 }, 1.5, Vector3 { x: 0, y: 255, z: 0 }, 64, false))));
@ -127,12 +130,12 @@ pub fn generate_test_scene(scene: &mut Scene, data: &mut AppData) -> Result<(Poi
let mut comp = ShapeComposition::new(64);
comp.included_shapes.push(Rc::new(RefCell::new(Cone::new(Vector3 { x: 20.0 + grid_size as f32, y: 5.0 + grid_size as f32, z: 10.0 }, Vector3 { x: 0.0, y: 0.0, z: 0.0 }, 0.0, 2.5, Vector3 { x: 0.0, y: 10.0, z: 0.0 },Vector3 { x: 0, y: 255, z: 0 }, 64, false))));
comp.excluded_shapes.push(Rc::new(RefCell::new(Cone::new(Vector3 { x: 20.0 + grid_size as f32, y: 5.0 + grid_size as f32, z: 10.0 }, Vector3 { x: 0.0, y: 0.0, z: 0.0 }, 0.0, 1.5, Vector3 { x: 0.0, y: 10.0, z: 0.0 },Vector3 { x: 0, y: 255, z: 0 }, 64, false))));
scene.volumetrics.push(Rc::new(RefCell::new(comp)));
//scene.volumetrics.push(Rc::new(RefCell::new(comp)));
let mut comp = ShapeComposition::new(64);
comp.included_shapes.push(Rc::new(RefCell::new(Rect::new(Vector3 { x: -5.0 + grid_size as f32, y: 5.0 + grid_size as f32, z: 10.0 }, Vector3 { x: 0.0, y: 0.0, z: 0.0 }, Vector3 { x: 5.0, y: 10.0, z: 2.0 },Vector3 { x: 0, y: 0, z: 255 }, 64, false))));
comp.excluded_shapes.push(Rc::new(RefCell::new(Rect::new(Vector3 { x: -5.0 + grid_size as f32, y: 5.0 + grid_size as f32, z: 10.0 }, Vector3 { x: 0.0, y: 0.0, z: 0.0 }, Vector3 { x: 3.0, y: 8.0, z: 2.0 },Vector3 { x: 0, y: 0, z: 255 }, 64, false))));
scene.volumetrics.push(Rc::new(RefCell::new(comp)));
//scene.volumetrics.push(Rc::new(RefCell::new(comp)));
Ok((cgmath::point3(5.0, 5.0, 10.0)))
}

View file

@ -181,18 +181,39 @@ impl Scene {
pub fn update_memory(&mut self, data: &mut AppData, reuse_memory: bool) {
// reuse_memory controls whether a fresh data vector is created or the existing one is used if it is the right size
let mut memory_index = 6;
let mut memory_index = 7;
// 0 - location for the maximum number of lights referenced per chunk (also will be the invalid memory allocation for pointing to a nonexistant neighbor)
// 1 - location for the max iterations per light
// 2 - diffuse raster samples (2*n + 1) * (2*n + 1) so as to always have at least the central fragment covered
// 3 - diffuse raster size
// 4 - max recursive rays
// 5 - diffuse rays per hit
// 6 - maximum number of compounds per light
for memorizable in &self.memorizables {
memorizable.borrow_mut().set_memory_start(memory_index);
memory_index += memorizable.borrow_mut().get_buffer_mem_size(data) as usize;
}
let mut compound_data_len = 1;
for compound in &self.volumetrics {
compound.borrow_mut().set_memory_start(compound_data_len);
compound_data_len += compound.borrow().get_compound_buffer_mem_size(data) as usize;
}
let mut volumetrics_memory = vec![compound_data_len as u32; compound_data_len];
let mut compute_task_one_size = 0;
let mut compute_task_one_out_size = 0;
let mut target_index = 1;
let mut node_count = 0;
for compound in &self.volumetrics {
compound.borrow_mut().target_memory_start = target_index;
target_index += compound.borrow().get_target_buffer_mem_size();
node_count += compound.borrow().get_num_nodes();
volumetrics_memory = compound.borrow_mut().insert_into_memory(volumetrics_memory, data, &self);
compute_task_one_size += compound.borrow().size.pow(2) as usize;
compute_task_one_out_size += compound.borrow().size.pow(3) as usize;
}
//println!("Memory size is {} kB, max indes is {}", memory_index * 32 / 8 /1024 + 1, memory_index);
let mut volume_vec;
let needs_overwrite;
@ -203,11 +224,13 @@ impl Scene {
needs_overwrite = false;
volume_vec = self.rt_memory.clone();
}
volume_vec[0] = data.num_lights_per_volume;
volume_vec[1] = data.max_iterations_per_light;
volume_vec[2] = data.diffuse_raster_steps;
volume_vec[3] = u32::from_ne_bytes(data.diffuse_raster_size.to_ne_bytes());
volume_vec[4] = data.max_recursive_rays;
volume_vec[5] = data.diffuse_rays_per_hit;
volume_vec[6] = data.num_compound_per_volume;
for memorizable in &self.memorizables {
if needs_overwrite || memorizable.borrow().is_dirty() {
@ -218,26 +241,13 @@ impl Scene {
self.rt_memory = volume_vec;
data.scene_rt_memory_size = (self.rt_memory.len() * 4) as u64; // size of the needed buffer size in bytes
let mut data_len = 0;
for compound in &self.volumetrics {
compound.borrow_mut().set_memory_start(data_len);
data_len += compound.borrow().get_compound_buffer_mem_size(data) as usize;
}
let mut volumetrics_memory = vec![0; data_len];
let mut compute_task_one_size = 0;
let mut compute_task_one_out_size = 0;
for compound in &self.volumetrics {
volumetrics_memory = compound.borrow_mut().insert_into_memory(volumetrics_memory, data, &self);
compute_task_one_size += compound.borrow().size.pow(2) as usize;
compute_task_one_out_size += compound.borrow().size.pow(3) as usize;
}
self.volumetrics_memory = volumetrics_memory;
data.scene_rt_volumetric_size = (self.volumetrics_memory.len() * 4) as u64; // size of the needed buffer size in bytes
data.compute_task_one_size = compute_task_one_size;
data.compute_task_one_out_buffer_size = (compute_task_one_out_size * 4) as u64;
data.compute_task_one_out_size = compute_task_one_out_size as u64;
data.compute_task_oct_tree_size = target_index as u64;
data.compute_task_oct_tree_nodes = (node_count) as u64;
}
pub unsafe fn destroy(&mut self, device: &vulkanalia::Device) {

View file

@ -31,16 +31,19 @@ enum ShapeTypes {
#[derive(Clone, Debug)]
pub struct ShapeComposition {
memory_start: usize,
pub target_memory_start: u32,
prev_memory_size: u32,
pub size: u32,
pub included_shapes: Vec<Rc<RefCell<dyn Volumetrics>>>,
pub excluded_shapes: Vec<Rc<RefCell<dyn Volumetrics>>>,
dirty: bool,
pub bbox_low: Vector3<f32>,
pub bbox_high: Vector3<f32>,
}
impl ShapeComposition {
pub fn new(size: u32) -> Self {
Self { memory_start: 0, prev_memory_size: 0, size: size, included_shapes: vec![], excluded_shapes: vec![], dirty: true }
Self { memory_start: 0, target_memory_start: 0, prev_memory_size: 0, size: size, included_shapes: vec![], excluded_shapes: vec![], dirty: true, bbox_low: Vector3 { x: 0.0, y: 0.0, z: 0.0 }, bbox_high: Vector3 { x: 0.0, y: 0.0, z: 0.0 } }
}
}
@ -60,7 +63,7 @@ impl CompoundMemorizable for ShapeComposition {
impl Memorizable for ShapeComposition {
fn get_buffer_mem_size(&self, data: &AppData) -> u32 {
//size, scale, memory_end, num_included, num_excluded, pos, wrapping address, included_address, excluded_address
//size, scale, memory_end, num_included, num_excluded, pos, target address, included_address, excluded_address
1 + 1 + 1 + 1 + 1 + 3 + 1 + self.included_shapes.len() as u32 + self.excluded_shapes.len() as u32
}
@ -117,6 +120,8 @@ impl Memorizable for ShapeComposition {
}
let bbox_high_pos_ind = bbox_high - bbox_low;
self.bbox_low = bbox_low;
self.bbox_high = bbox_high;
let scale = bbox_high_pos_ind.x.max(bbox_high_pos_ind.y.max(bbox_high_pos_ind.z)) / (self.size as f32);
v[self.memory_start + 1] = u32::from_ne_bytes(scale.to_ne_bytes());
@ -126,7 +131,7 @@ impl Memorizable for ShapeComposition {
v[self.memory_start + 5] = u32::from_ne_bytes(bbox_low.x.to_ne_bytes());
v[self.memory_start + 6] = u32::from_ne_bytes(bbox_low.y.to_ne_bytes());
v[self.memory_start + 7] = u32::from_ne_bytes(bbox_low.z.to_ne_bytes());
v[self.memory_start + 8] = 0; //TODO add wrapping reference
v[self.memory_start + 8] = self.target_memory_start as u32;
self.prev_memory_size = self.get_compound_buffer_mem_size(data);
self.dirty = false;
@ -142,6 +147,24 @@ impl Memorizable for ShapeComposition {
}
}
impl ShapeComposition {
pub fn get_num_nodes(&self) -> u32 {
let mut nodes = 0;
let mut add_size = 1;
let mut size = self.size;
while size >= 2 {
nodes += add_size;
add_size *= 8;
size /= 2;
}
nodes
}
pub fn get_target_buffer_mem_size(&self) -> u32 {
self.get_num_nodes() * 9
}
}
#[derive(Clone, Debug, PartialEq)]
pub struct Sphere {
pos: Vector3<f32>,