recursive reflection for nontransparnt elements
This commit is contained in:
parent
ffbba3be19
commit
dc66ae4b3d
5 changed files with 162 additions and 101 deletions
Binary file not shown.
|
@ -25,6 +25,12 @@ layout(binding = 0) uniform UniformBufferObject {
|
|||
layout(binding = 2) buffer SceneInfoBuffer{
|
||||
uint infos[];
|
||||
} scene_info;
|
||||
uint max_num_lights = scene_info.infos[0];
|
||||
uint max_iterations_per_light = scene_info.infos[1];
|
||||
// diffuse raytracing using a quadratic raster of rays
|
||||
int half_diffuse_raster_steps = int(scene_info.infos[2]);
|
||||
float raster_distance = uintBitsToFloat(scene_info.infos[3]);
|
||||
int raster_points = (2 * half_diffuse_raster_steps + 1) * (2 * half_diffuse_raster_steps + 1);
|
||||
|
||||
uvec4 unpack_color(uint val) {
|
||||
// left most 8 bits first
|
||||
|
@ -37,7 +43,7 @@ uvec4 unpack_color(uint val) {
|
|||
}
|
||||
|
||||
uint sample_neighbor_from_scene_info(uint volume_start, uvec2 raster_pos, uint f) {
|
||||
uint array_descr_start = volume_start + 6 + scene_info.infos[0];
|
||||
uint array_descr_start = volume_start + 6 + max_num_lights;
|
||||
uint color_array_start = array_descr_start + 24;
|
||||
|
||||
uint top_color_size_u = scene_info.infos[array_descr_start];
|
||||
|
@ -103,7 +109,7 @@ uint sample_neighbor_from_scene_info(uint volume_start, uvec2 raster_pos, uint f
|
|||
}
|
||||
|
||||
uvec4 sample_color_from_scene_info(uint volume_start, uvec2 raster_pos, uint f) {
|
||||
uint array_descr_start = volume_start + 6 + scene_info.infos[0];
|
||||
uint array_descr_start = volume_start + 6 + max_num_lights;
|
||||
uint color_array_start = array_descr_start + 24;
|
||||
|
||||
uint top_color_size_u = scene_info.infos[array_descr_start];
|
||||
|
@ -149,6 +155,34 @@ vec3 get_light_color(uint light_index) {
|
|||
return vec3(float(scene_info.infos[light_index + 3]) / 255.0, float(scene_info.infos[light_index + 4]) / 255.0, float(scene_info.infos[light_index + 5]) / 255.0);
|
||||
}
|
||||
|
||||
vec3 normal_for_facing(uint facing) {
|
||||
if (facing == 0) {
|
||||
return vec3(0.0, 0.0, -1.0);
|
||||
}
|
||||
if (facing == 1) {
|
||||
return vec3(0.0, 0.0, 1.0);
|
||||
}
|
||||
if (facing == 2) {
|
||||
return vec3(1.0, 0.0, 0.0);
|
||||
}
|
||||
if (facing == 3) {
|
||||
return vec3(-1.0, 0.0, 0.0);
|
||||
}
|
||||
if (facing == 4) {
|
||||
return vec3(0.0, 1.0, 0.0);
|
||||
}
|
||||
if (facing == 5) {
|
||||
return vec3(0.0, -1.0, 0.0);
|
||||
}
|
||||
|
||||
return vec3(0.0, 0.0, 0.0);
|
||||
}
|
||||
|
||||
vec3 reflect_vector(vec3 direction, uint facing) {
|
||||
vec3 normal = normal_for_facing(facing);
|
||||
return direction - 2.0 * dot(direction, normal) * normal;
|
||||
}
|
||||
|
||||
struct Tracing {
|
||||
vec3 end_pos;
|
||||
uvec4 end_color;
|
||||
|
@ -159,9 +193,14 @@ struct Tracing {
|
|||
bool has_hit;
|
||||
vec3 color_mul;
|
||||
uvec2 end_raster;
|
||||
|
||||
bool has_transparent_hit;
|
||||
};
|
||||
|
||||
Tracing trace_ray(uint volume_start, vec3 starting_pos, vec3 direction, float max_factor, uint start_cycle, uint max_cycle) {
|
||||
Tracing trace_ray(uint volume_start, vec3 starting_pos, vec3 start_direction, float start_max_factor, uint start_cycle, uint max_cycle, bool allow_reflect) {
|
||||
vec3 direction = start_direction;
|
||||
float max_factor = start_max_factor;
|
||||
vec3 pos = starting_pos;
|
||||
uint cycle = start_cycle;
|
||||
// setup volume info
|
||||
uint volume_index = volume_start;
|
||||
|
@ -184,8 +223,18 @@ Tracing trace_ray(uint volume_start, vec3 starting_pos, vec3 direction, float ma
|
|||
float z_factor = max_factor;
|
||||
|
||||
Tracing result;
|
||||
result.has_hit = false;
|
||||
result.has_transparent_hit = false;
|
||||
result.color_mul = vec3(1.0, 1.0, 1.0);
|
||||
|
||||
// intermediate storage for transparent hit values
|
||||
vec3 end_pos_transparent;
|
||||
uvec4 end_color_transparent;
|
||||
uint end_volume_transparent;
|
||||
uint end_facing_transparent;
|
||||
uvec2 end_raster_transparent;
|
||||
vec3 color_mul_transparent;
|
||||
|
||||
while (cycle < max_cycle) {
|
||||
cycle ++;
|
||||
float x_border = float(volume_pos_x + (scene_info.infos[volume_index + 3]) * uint(x_pos)) - 0.5;
|
||||
|
@ -195,18 +244,17 @@ Tracing trace_ray(uint volume_start, vec3 starting_pos, vec3 direction, float ma
|
|||
bool needs_next_light = false;
|
||||
|
||||
if (!x_null) {
|
||||
x_factor = (x_border - starting_pos.x) / direction.x;
|
||||
x_factor = (x_border - pos.x) / direction.x;
|
||||
}
|
||||
if (!y_null) {
|
||||
y_factor = (y_border - starting_pos.y) / direction.y;
|
||||
y_factor = (y_border - pos.y) / direction.y;
|
||||
}
|
||||
if (!z_null) {
|
||||
z_factor = (z_border - starting_pos.z) / direction.z;
|
||||
z_factor = (z_border - pos.z) / direction.z;
|
||||
}
|
||||
|
||||
if ((x_factor >= max_factor) && (y_factor >= max_factor) && (z_factor >= max_factor)) {
|
||||
// no hit, finish tracking
|
||||
result.has_hit = false;
|
||||
break;
|
||||
} else {
|
||||
// if there is a border hit before reaching the end
|
||||
|
@ -215,44 +263,19 @@ Tracing trace_ray(uint volume_start, vec3 starting_pos, vec3 direction, float ma
|
|||
uint hit_facing = 0;
|
||||
uint u = 0;
|
||||
uint v = 0;
|
||||
if (x_factor <= y_factor && x_factor <= z_factor) {
|
||||
if (x_pos) {
|
||||
hit_facing = 3;
|
||||
} else {
|
||||
hit_facing = 2;
|
||||
}
|
||||
vec3 intersection_pos = starting_pos + x_factor * direction;
|
||||
u = uint(round(intersection_pos.y)) - volume_pos_y;
|
||||
v = uint(round(intersection_pos.z)) - volume_pos_z;
|
||||
result.end_pos = intersection_pos;
|
||||
result.end_facing = hit_facing;
|
||||
}
|
||||
|
||||
if (y_factor <= x_factor && y_factor <= z_factor) {
|
||||
if (y_pos) {
|
||||
hit_facing = 5;
|
||||
} else {
|
||||
hit_facing = 4;
|
||||
}
|
||||
vec3 intersection_pos = starting_pos + y_factor * direction;
|
||||
u = uint(round(intersection_pos.x)) - volume_pos_x;
|
||||
v = uint(round(intersection_pos.z)) - volume_pos_z;
|
||||
result.end_pos = intersection_pos;
|
||||
result.end_facing = hit_facing;
|
||||
}
|
||||
bool is_x_smallest = x_factor < y_factor && x_factor < z_factor;
|
||||
bool is_y_smallest = y_factor < x_factor && y_factor < z_factor;
|
||||
bool is_z_smallest = z_factor <= x_factor && z_factor <= y_factor;
|
||||
|
||||
hit_facing = uint(is_x_smallest) * (2 + uint(x_pos)) + uint(is_y_smallest) * (4 + uint(y_pos)) + uint(is_z_smallest && !z_pos);
|
||||
float smallest_factor = min(min(x_factor, y_factor), z_factor); // maybe use multiplication instead?
|
||||
vec3 intersection_pos = pos + smallest_factor * direction;
|
||||
u = uint(is_x_smallest) * (uint(round(intersection_pos.y)) - volume_pos_y) +
|
||||
uint(is_y_smallest || is_z_smallest) * (uint(round(intersection_pos.x)) - volume_pos_x);
|
||||
v = uint(is_x_smallest || is_y_smallest) * (uint(round(intersection_pos.z)) - volume_pos_z) +
|
||||
uint(is_z_smallest) * (uint(round(intersection_pos.y)) - volume_pos_y);
|
||||
|
||||
if (z_factor <= x_factor && z_factor <= y_factor) {
|
||||
if (z_pos) {
|
||||
hit_facing = 0;
|
||||
} else {
|
||||
hit_facing = 1;
|
||||
}
|
||||
vec3 intersection_pos = starting_pos + z_factor * direction;
|
||||
u = uint(round(intersection_pos.x)) - volume_pos_x;
|
||||
v = uint(round(intersection_pos.y)) - volume_pos_y;
|
||||
result.end_pos = intersection_pos;
|
||||
result.end_facing = hit_facing;
|
||||
}
|
||||
uint next_neighbor = sample_neighbor_from_scene_info(volume_index, uvec2(u, v), hit_facing);
|
||||
uvec4 color_sample = sample_color_from_scene_info(volume_index, uvec2(u, v), hit_facing);
|
||||
|
||||
|
@ -264,42 +287,95 @@ Tracing trace_ray(uint volume_start, vec3 starting_pos, vec3 direction, float ma
|
|||
volume_pos_y = scene_info.infos[volume_index + 1];
|
||||
volume_pos_z = scene_info.infos[volume_index + 2];
|
||||
} else {
|
||||
// neightbor miss
|
||||
// neighbor miss
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
if (next_neighbor != 0) {
|
||||
// transparent hit, move on but change the color
|
||||
end_volume_transparent = volume_index;
|
||||
color_mul_transparent = result.color_mul;
|
||||
|
||||
volume_index = next_neighbor;
|
||||
volume_pos_x = scene_info.infos[volume_index + 0];
|
||||
volume_pos_y = scene_info.infos[volume_index + 1];
|
||||
volume_pos_z = scene_info.infos[volume_index + 2];
|
||||
result.color_mul = result.color_mul * vec3(float(color_sample.x) / 255.0, float(color_sample.y) / 255.0, float(color_sample.z) / 255.0);
|
||||
result.has_transparent_hit = true;
|
||||
result.end_volume = volume_index;
|
||||
|
||||
end_color_transparent = color_sample;
|
||||
end_raster_transparent = uvec2(u, v);
|
||||
end_pos_transparent = intersection_pos;
|
||||
end_facing_transparent = hit_facing;
|
||||
|
||||
// stop iterating if there is barely anything left to see
|
||||
if (max(result.color_mul.x, max(result.color_mul.y, result.color_mul.z)) < 0.1) {
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
// color hit, move on
|
||||
// color hit, either reflect or move on
|
||||
result.end_pos = intersection_pos;
|
||||
result.end_facing = hit_facing;
|
||||
result.end_color = color_sample;
|
||||
result.end_raster = uvec2(u, v);
|
||||
result.has_hit = true;
|
||||
break;
|
||||
result.end_volume = volume_index;
|
||||
|
||||
float reflectivity = 1.0 - float(color_sample.w) / 255.0;
|
||||
vec3 refltective_color_mul = result.color_mul * vec3(float(color_sample.x) / 255.0, float(color_sample.y) / 255.0, float(color_sample.z) / 255.0);
|
||||
vec3 visibility_after_reflection = refltective_color_mul * reflectivity;
|
||||
//break;
|
||||
//max(visibility_after_reflection.x, max(visibility_after_reflection.y, visibility_after_reflection.z)) >= 0.1 &&
|
||||
if (allow_reflect) {
|
||||
// do reflect
|
||||
direction = reflect_vector(direction, hit_facing);
|
||||
pos = intersection_pos;
|
||||
//max_factor -= smallest_factor;
|
||||
|
||||
x_pos = direction.x > 0.0;
|
||||
x_null = (direction.x == 0.0);
|
||||
|
||||
y_pos = direction.y > 0.0;
|
||||
y_null = (direction.y == 0.0);
|
||||
|
||||
z_pos = direction.z > 0.0;
|
||||
z_null = (direction.z == 0.0);
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
result.end_volume = volume_index;
|
||||
result.end_factor = min(min(x_factor, y_factor), z_factor);
|
||||
result.end_cycle = cycle;
|
||||
|
||||
// in case we have a transparent hit but no hit afterwards
|
||||
if (!result.has_hit && result.has_transparent_hit) {
|
||||
// did we stop because nothing could be seen through the object?
|
||||
if (max(result.color_mul.x, max(result.color_mul.y, result.color_mul.z)) < 0.1) {
|
||||
// if so count it as a hit
|
||||
result.has_hit = true;
|
||||
}
|
||||
result.end_pos = end_pos_transparent;
|
||||
result.end_color = end_color_transparent;
|
||||
result.end_volume = end_volume_transparent;
|
||||
result.end_facing = end_facing_transparent;
|
||||
result.end_raster = end_raster_transparent;
|
||||
result.color_mul = color_mul_transparent;
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
vec3 get_lighting_color(uint volume_start, vec3 starting_pos, vec4 orig_color_sample, vec3 normal) {
|
||||
uint max_light_num = scene_info.infos[0];
|
||||
uint light_num = 0;
|
||||
|
||||
// initialize color
|
||||
vec3 color_sum = vec3(0.0, 0.0, 0.0) + (orig_color_sample.xyz * 0.01);
|
||||
|
||||
uint max_iterations = max_light_num * scene_info.infos[1];
|
||||
uint max_iterations = max_num_lights * max_iterations_per_light;
|
||||
uint iteration = 0;
|
||||
while (iteration < max_iterations) {
|
||||
// setup light info
|
||||
|
@ -311,15 +387,14 @@ vec3 get_lighting_color(uint volume_start, vec3 starting_pos, vec4 orig_color_sa
|
|||
vec3 light_direction = get_light_position(light_index) - starting_pos;
|
||||
vec3 light_color = get_light_color(light_index);
|
||||
|
||||
Tracing result = trace_ray(volume_start, starting_pos, light_direction, 1.0, iteration, max_iterations);
|
||||
if (!result.has_hit) {
|
||||
// no hit, add light color result
|
||||
color_sum += result.color_mul * max(dot(normal, normalize(light_direction)), 0.0) * (orig_color_sample.xyz * light_color) / (length(light_direction) * length(light_direction));
|
||||
}
|
||||
Tracing result = trace_ray(volume_start, starting_pos, light_direction, 1.0, iteration, max_iterations, false);
|
||||
// add result, if there is a hit the null vector will be added
|
||||
color_sum += float(!result.has_hit) * result.color_mul * max(dot(normal, normalize(light_direction)), 0.0) * (orig_color_sample.xyz * light_color) / (length(light_direction) * length(light_direction));
|
||||
|
||||
iteration = result.end_cycle;
|
||||
|
||||
light_num += 1;
|
||||
if (light_num >= max_light_num) {
|
||||
if (light_num >= max_num_lights) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
@ -327,42 +402,14 @@ vec3 get_lighting_color(uint volume_start, vec3 starting_pos, vec4 orig_color_sa
|
|||
return color_sum;
|
||||
}
|
||||
|
||||
vec3 normal_for_facing(uint facing) {
|
||||
if (facing == 0) {
|
||||
return vec3(0.0, 0.0, -1.0);
|
||||
}
|
||||
if (facing == 1) {
|
||||
return vec3(0.0, 0.0, 1.0);
|
||||
}
|
||||
if (facing == 2) {
|
||||
return vec3(0.0, 1.0, 0.0);
|
||||
}
|
||||
if (facing == 3) {
|
||||
return vec3(0.0, -1.0, 0.0);
|
||||
}
|
||||
if (facing == 4) {
|
||||
return vec3(1.0, 0.0, 0.0);
|
||||
}
|
||||
if (facing == 5) {
|
||||
return vec3(-1.0, 0.0, 0.0);
|
||||
}
|
||||
|
||||
return vec3(0.0, 0.0, 0.0);
|
||||
}
|
||||
|
||||
vec3 diffuse_tracing(uint volume_start, uvec2 raster_pos, vec3 pos, uint f) {
|
||||
uvec4 color_roughness = sample_color_from_scene_info(volume_start, raster_pos, f);
|
||||
vec4 orig_color_sample = vec4(float(color_roughness.x) / 255.0, float(color_roughness.y) / 255.0, float(color_roughness.z) / 255.0, 1);
|
||||
vec3 normal = normal_for_facing(f);
|
||||
|
||||
// diffuse raytracing using a quadratic raster of rays
|
||||
int raster_half_steps = int(scene_info.infos[2]);
|
||||
float raster_distance = uintBitsToFloat(scene_info.infos[3]);
|
||||
int raster_points = (2 * raster_half_steps + 1) * (2 * raster_half_steps + 1);
|
||||
|
||||
vec3 color_sum = vec3(0.0, 0.0, 0.0);
|
||||
for (int u_offset = -raster_half_steps; u_offset <= raster_half_steps; u_offset++) {
|
||||
for (int v_offset = -raster_half_steps; v_offset <= raster_half_steps; v_offset++) {
|
||||
for (int u_offset = -half_diffuse_raster_steps; u_offset <= half_diffuse_raster_steps; u_offset++) {
|
||||
for (int v_offset = -half_diffuse_raster_steps; v_offset <= half_diffuse_raster_steps; v_offset++) {
|
||||
float x_offset = raster_distance * float(u_offset) * float(f == 0 || f == 1 || f == 4 || f == 5);
|
||||
float y_offset = raster_distance * float(u_offset) * float(f == 2 || f == 3);
|
||||
y_offset += raster_distance * float(v_offset) * float(f == 0 || f == 1);
|
||||
|
@ -400,12 +447,12 @@ void main() {
|
|||
vec3 color_sum;
|
||||
|
||||
uint orig_neighbor = sample_neighbor_from_scene_info(fragVolumeStart, fragRasterPos, facing);
|
||||
float pos_infinity = uintBitsToFloat(0x7F800000);
|
||||
if (orig_neighbor != 0) {
|
||||
float pos_infinity = uintBitsToFloat(0x7F800000);
|
||||
Tracing t = trace_ray(fragVolumeStart, ubo.camera_pos, clamped_pos - ubo.camera_pos, 100.0, 0, 20);
|
||||
Tracing t = trace_ray(fragVolumeStart, ubo.camera_pos, clamped_pos - ubo.camera_pos, pos_infinity, 0, max_iterations_per_light, false);
|
||||
float opacity = float(color_roughness.w) / 255.0;
|
||||
if (t.has_hit) {
|
||||
vec3 color_seen_through = diffuse_tracing(t.end_volume, t.end_raster, t.end_pos, t.end_facing) * orig_color_sample;
|
||||
vec3 color_seen_through = diffuse_tracing(t.end_volume, t.end_raster, t.end_pos, t.end_facing) * orig_color_sample * t.color_mul;
|
||||
vec3 color_direct = diffuse_tracing(fragVolumeStart, fragRasterPos, clamped_pos, facing);
|
||||
color_sum = opacity * color_direct + (1.0 - opacity) * color_seen_through;
|
||||
}
|
||||
|
@ -417,8 +464,15 @@ void main() {
|
|||
}
|
||||
else {
|
||||
color_sum = diffuse_tracing(fragVolumeStart, fragRasterPos, clamped_pos, facing);
|
||||
}
|
||||
|
||||
vec3 reflection_direction = reflect_vector(normalize(clamped_pos - ubo.camera_pos), facing);
|
||||
Tracing reflection_tracing = trace_ray(fragVolumeStart, clamped_pos, reflection_direction, pos_infinity, 0, max_iterations_per_light, true);
|
||||
float reflectivity = 1.0 - float(color_roughness.w) / 255.0;
|
||||
if (reflection_tracing.has_hit || reflection_tracing.has_transparent_hit) {
|
||||
vec3 color_from_reflection = diffuse_tracing(reflection_tracing.end_volume, reflection_tracing.end_raster, reflection_tracing.end_pos, reflection_tracing.end_facing) * orig_color_sample;
|
||||
color_sum = color_sum * (1.0 - reflectivity) + color_from_reflection * reflectivity;
|
||||
}
|
||||
}
|
||||
|
||||
outColor = vec4(color_sum, 1.0);
|
||||
}
|
|
@ -180,7 +180,7 @@ impl App {
|
|||
data.use_geometry_shader = false;
|
||||
data.num_lights_per_volume = 2;
|
||||
data.max_iterations_per_light = 20;
|
||||
data.diffuse_raster_steps = 2;
|
||||
data.diffuse_raster_steps = 0;
|
||||
data.diffuse_raster_size = 0.01;
|
||||
data.max_recursive_rays = 10;
|
||||
data.diffuse_rays_per_hit = 1;
|
||||
|
|
|
@ -66,9 +66,12 @@ impl EmptyVolume {
|
|||
let start_time = Instant::now();
|
||||
// iterate over all block positions in the oct tree
|
||||
let mut check_its = 0;
|
||||
for x_index in 0..tree.size {
|
||||
for y_index in 0..tree.size {
|
||||
for z_index in 0..tree.size {
|
||||
let mut x_index = 0;
|
||||
while x_index < tree.size {
|
||||
let mut y_index = 0;
|
||||
while y_index < tree.size {
|
||||
let mut z_index = 0;
|
||||
while z_index < tree.size {
|
||||
// check if there is a block at that position
|
||||
let query_result = tree.test_element(x_index, y_index, z_index);
|
||||
let mut transparent = false;
|
||||
|
@ -86,6 +89,7 @@ impl EmptyVolume {
|
|||
for volume in &volumes {
|
||||
if volume.borrow().contains(&Vector3{x: x_index, y: y_index, z: z_index}) {
|
||||
contained = true;
|
||||
z_index = volume.borrow().size_z + volume.borrow().position.z;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
@ -479,9 +483,12 @@ impl EmptyVolume {
|
|||
println!("new volume done");
|
||||
//push to the list
|
||||
volumes.push(reference);
|
||||
}
|
||||
}
|
||||
z_index += 1
|
||||
}
|
||||
y_index += 1;
|
||||
}
|
||||
x_index += 1;
|
||||
}
|
||||
println!("Did {} oct tree checks!", check_its);
|
||||
println!("add the neighbor linkage for all the volumes of the oct tree");
|
||||
|
|
|
@ -73,7 +73,7 @@ impl Scene {
|
|||
color: vec3(shade, 1.0, shade),
|
||||
tex_coord: vec2(0.0, 0.0),
|
||||
transparent: false,
|
||||
roughness: 128,
|
||||
roughness: 0,
|
||||
};
|
||||
|
||||
oct_tree.set_cube(cube.clone());
|
||||
|
@ -83,19 +83,19 @@ impl Scene {
|
|||
let shade = (rng.gen_range(0..25) as f32) / 100.0;
|
||||
let cube = Cube {
|
||||
pos: vec3(10.0, 10.0, 10.0),
|
||||
color: vec3(1.0, 0.0, 0.0),
|
||||
color: vec3(1.0, 1.0, 1.0),
|
||||
tex_coord: vec2(0.0, 0.0),
|
||||
transparent: true,
|
||||
roughness: 32,
|
||||
transparent: false,
|
||||
roughness: 0,
|
||||
};
|
||||
oct_tree.set_cube(cube.clone());
|
||||
|
||||
let cube = Cube {
|
||||
pos: vec3(10.0, 10.0, 9.0),
|
||||
color: vec3(1.0, 0.0, 0.0),
|
||||
color: vec3(1.0, 1.0, 1.0),
|
||||
tex_coord: vec2(0.0, 0.0),
|
||||
transparent: true,
|
||||
roughness: 32,
|
||||
transparent: false,
|
||||
roughness: 0,
|
||||
};
|
||||
oct_tree.set_cube(cube.clone());
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue