recursive reflection for nontransparnt elements

This commit is contained in:
zomseffen 2025-02-05 16:50:57 +01:00
parent ffbba3be19
commit dc66ae4b3d
5 changed files with 162 additions and 101 deletions

Binary file not shown.

View file

@ -25,6 +25,12 @@ layout(binding = 0) uniform UniformBufferObject {
layout(binding = 2) buffer SceneInfoBuffer{ layout(binding = 2) buffer SceneInfoBuffer{
uint infos[]; uint infos[];
} scene_info; } scene_info;
uint max_num_lights = scene_info.infos[0];
uint max_iterations_per_light = scene_info.infos[1];
// diffuse raytracing using a quadratic raster of rays
int half_diffuse_raster_steps = int(scene_info.infos[2]);
float raster_distance = uintBitsToFloat(scene_info.infos[3]);
int raster_points = (2 * half_diffuse_raster_steps + 1) * (2 * half_diffuse_raster_steps + 1);
uvec4 unpack_color(uint val) { uvec4 unpack_color(uint val) {
// left most 8 bits first // left most 8 bits first
@ -37,7 +43,7 @@ uvec4 unpack_color(uint val) {
} }
uint sample_neighbor_from_scene_info(uint volume_start, uvec2 raster_pos, uint f) { uint sample_neighbor_from_scene_info(uint volume_start, uvec2 raster_pos, uint f) {
uint array_descr_start = volume_start + 6 + scene_info.infos[0]; uint array_descr_start = volume_start + 6 + max_num_lights;
uint color_array_start = array_descr_start + 24; uint color_array_start = array_descr_start + 24;
uint top_color_size_u = scene_info.infos[array_descr_start]; uint top_color_size_u = scene_info.infos[array_descr_start];
@ -103,7 +109,7 @@ uint sample_neighbor_from_scene_info(uint volume_start, uvec2 raster_pos, uint f
} }
uvec4 sample_color_from_scene_info(uint volume_start, uvec2 raster_pos, uint f) { uvec4 sample_color_from_scene_info(uint volume_start, uvec2 raster_pos, uint f) {
uint array_descr_start = volume_start + 6 + scene_info.infos[0]; uint array_descr_start = volume_start + 6 + max_num_lights;
uint color_array_start = array_descr_start + 24; uint color_array_start = array_descr_start + 24;
uint top_color_size_u = scene_info.infos[array_descr_start]; uint top_color_size_u = scene_info.infos[array_descr_start];
@ -149,6 +155,34 @@ vec3 get_light_color(uint light_index) {
return vec3(float(scene_info.infos[light_index + 3]) / 255.0, float(scene_info.infos[light_index + 4]) / 255.0, float(scene_info.infos[light_index + 5]) / 255.0); return vec3(float(scene_info.infos[light_index + 3]) / 255.0, float(scene_info.infos[light_index + 4]) / 255.0, float(scene_info.infos[light_index + 5]) / 255.0);
} }
vec3 normal_for_facing(uint facing) {
if (facing == 0) {
return vec3(0.0, 0.0, -1.0);
}
if (facing == 1) {
return vec3(0.0, 0.0, 1.0);
}
if (facing == 2) {
return vec3(1.0, 0.0, 0.0);
}
if (facing == 3) {
return vec3(-1.0, 0.0, 0.0);
}
if (facing == 4) {
return vec3(0.0, 1.0, 0.0);
}
if (facing == 5) {
return vec3(0.0, -1.0, 0.0);
}
return vec3(0.0, 0.0, 0.0);
}
vec3 reflect_vector(vec3 direction, uint facing) {
vec3 normal = normal_for_facing(facing);
return direction - 2.0 * dot(direction, normal) * normal;
}
struct Tracing { struct Tracing {
vec3 end_pos; vec3 end_pos;
uvec4 end_color; uvec4 end_color;
@ -159,9 +193,14 @@ struct Tracing {
bool has_hit; bool has_hit;
vec3 color_mul; vec3 color_mul;
uvec2 end_raster; uvec2 end_raster;
bool has_transparent_hit;
}; };
Tracing trace_ray(uint volume_start, vec3 starting_pos, vec3 direction, float max_factor, uint start_cycle, uint max_cycle) { Tracing trace_ray(uint volume_start, vec3 starting_pos, vec3 start_direction, float start_max_factor, uint start_cycle, uint max_cycle, bool allow_reflect) {
vec3 direction = start_direction;
float max_factor = start_max_factor;
vec3 pos = starting_pos;
uint cycle = start_cycle; uint cycle = start_cycle;
// setup volume info // setup volume info
uint volume_index = volume_start; uint volume_index = volume_start;
@ -184,8 +223,18 @@ Tracing trace_ray(uint volume_start, vec3 starting_pos, vec3 direction, float ma
float z_factor = max_factor; float z_factor = max_factor;
Tracing result; Tracing result;
result.has_hit = false;
result.has_transparent_hit = false;
result.color_mul = vec3(1.0, 1.0, 1.0); result.color_mul = vec3(1.0, 1.0, 1.0);
// intermediate storage for transparent hit values
vec3 end_pos_transparent;
uvec4 end_color_transparent;
uint end_volume_transparent;
uint end_facing_transparent;
uvec2 end_raster_transparent;
vec3 color_mul_transparent;
while (cycle < max_cycle) { while (cycle < max_cycle) {
cycle ++; cycle ++;
float x_border = float(volume_pos_x + (scene_info.infos[volume_index + 3]) * uint(x_pos)) - 0.5; float x_border = float(volume_pos_x + (scene_info.infos[volume_index + 3]) * uint(x_pos)) - 0.5;
@ -195,18 +244,17 @@ Tracing trace_ray(uint volume_start, vec3 starting_pos, vec3 direction, float ma
bool needs_next_light = false; bool needs_next_light = false;
if (!x_null) { if (!x_null) {
x_factor = (x_border - starting_pos.x) / direction.x; x_factor = (x_border - pos.x) / direction.x;
} }
if (!y_null) { if (!y_null) {
y_factor = (y_border - starting_pos.y) / direction.y; y_factor = (y_border - pos.y) / direction.y;
} }
if (!z_null) { if (!z_null) {
z_factor = (z_border - starting_pos.z) / direction.z; z_factor = (z_border - pos.z) / direction.z;
} }
if ((x_factor >= max_factor) && (y_factor >= max_factor) && (z_factor >= max_factor)) { if ((x_factor >= max_factor) && (y_factor >= max_factor) && (z_factor >= max_factor)) {
// no hit, finish tracking // no hit, finish tracking
result.has_hit = false;
break; break;
} else { } else {
// if there is a border hit before reaching the end // if there is a border hit before reaching the end
@ -215,44 +263,19 @@ Tracing trace_ray(uint volume_start, vec3 starting_pos, vec3 direction, float ma
uint hit_facing = 0; uint hit_facing = 0;
uint u = 0; uint u = 0;
uint v = 0; uint v = 0;
if (x_factor <= y_factor && x_factor <= z_factor) {
if (x_pos) {
hit_facing = 3;
} else {
hit_facing = 2;
}
vec3 intersection_pos = starting_pos + x_factor * direction;
u = uint(round(intersection_pos.y)) - volume_pos_y;
v = uint(round(intersection_pos.z)) - volume_pos_z;
result.end_pos = intersection_pos;
result.end_facing = hit_facing;
}
if (y_factor <= x_factor && y_factor <= z_factor) { bool is_x_smallest = x_factor < y_factor && x_factor < z_factor;
if (y_pos) { bool is_y_smallest = y_factor < x_factor && y_factor < z_factor;
hit_facing = 5; bool is_z_smallest = z_factor <= x_factor && z_factor <= y_factor;
} else {
hit_facing = 4; hit_facing = uint(is_x_smallest) * (2 + uint(x_pos)) + uint(is_y_smallest) * (4 + uint(y_pos)) + uint(is_z_smallest && !z_pos);
} float smallest_factor = min(min(x_factor, y_factor), z_factor); // maybe use multiplication instead?
vec3 intersection_pos = starting_pos + y_factor * direction; vec3 intersection_pos = pos + smallest_factor * direction;
u = uint(round(intersection_pos.x)) - volume_pos_x; u = uint(is_x_smallest) * (uint(round(intersection_pos.y)) - volume_pos_y) +
v = uint(round(intersection_pos.z)) - volume_pos_z; uint(is_y_smallest || is_z_smallest) * (uint(round(intersection_pos.x)) - volume_pos_x);
result.end_pos = intersection_pos; v = uint(is_x_smallest || is_y_smallest) * (uint(round(intersection_pos.z)) - volume_pos_z) +
result.end_facing = hit_facing; uint(is_z_smallest) * (uint(round(intersection_pos.y)) - volume_pos_y);
}
if (z_factor <= x_factor && z_factor <= y_factor) {
if (z_pos) {
hit_facing = 0;
} else {
hit_facing = 1;
}
vec3 intersection_pos = starting_pos + z_factor * direction;
u = uint(round(intersection_pos.x)) - volume_pos_x;
v = uint(round(intersection_pos.y)) - volume_pos_y;
result.end_pos = intersection_pos;
result.end_facing = hit_facing;
}
uint next_neighbor = sample_neighbor_from_scene_info(volume_index, uvec2(u, v), hit_facing); uint next_neighbor = sample_neighbor_from_scene_info(volume_index, uvec2(u, v), hit_facing);
uvec4 color_sample = sample_color_from_scene_info(volume_index, uvec2(u, v), hit_facing); uvec4 color_sample = sample_color_from_scene_info(volume_index, uvec2(u, v), hit_facing);
@ -264,42 +287,95 @@ Tracing trace_ray(uint volume_start, vec3 starting_pos, vec3 direction, float ma
volume_pos_y = scene_info.infos[volume_index + 1]; volume_pos_y = scene_info.infos[volume_index + 1];
volume_pos_z = scene_info.infos[volume_index + 2]; volume_pos_z = scene_info.infos[volume_index + 2];
} else { } else {
// neightbor miss // neighbor miss
break; break;
} }
} else { } else {
if (next_neighbor != 0) { if (next_neighbor != 0) {
// transparent hit, move on but change the color // transparent hit, move on but change the color
end_volume_transparent = volume_index;
color_mul_transparent = result.color_mul;
volume_index = next_neighbor; volume_index = next_neighbor;
volume_pos_x = scene_info.infos[volume_index + 0]; volume_pos_x = scene_info.infos[volume_index + 0];
volume_pos_y = scene_info.infos[volume_index + 1]; volume_pos_y = scene_info.infos[volume_index + 1];
volume_pos_z = scene_info.infos[volume_index + 2]; volume_pos_z = scene_info.infos[volume_index + 2];
result.color_mul = result.color_mul * vec3(float(color_sample.x) / 255.0, float(color_sample.y) / 255.0, float(color_sample.z) / 255.0); result.color_mul = result.color_mul * vec3(float(color_sample.x) / 255.0, float(color_sample.y) / 255.0, float(color_sample.z) / 255.0);
result.has_transparent_hit = true;
result.end_volume = volume_index;
end_color_transparent = color_sample;
end_raster_transparent = uvec2(u, v);
end_pos_transparent = intersection_pos;
end_facing_transparent = hit_facing;
// stop iterating if there is barely anything left to see
if (max(result.color_mul.x, max(result.color_mul.y, result.color_mul.z)) < 0.1) {
break;
}
} else { } else {
// color hit, move on // color hit, either reflect or move on
result.end_pos = intersection_pos;
result.end_facing = hit_facing;
result.end_color = color_sample; result.end_color = color_sample;
result.end_raster = uvec2(u, v); result.end_raster = uvec2(u, v);
result.has_hit = true; result.has_hit = true;
break; result.end_volume = volume_index;
float reflectivity = 1.0 - float(color_sample.w) / 255.0;
vec3 refltective_color_mul = result.color_mul * vec3(float(color_sample.x) / 255.0, float(color_sample.y) / 255.0, float(color_sample.z) / 255.0);
vec3 visibility_after_reflection = refltective_color_mul * reflectivity;
//break;
//max(visibility_after_reflection.x, max(visibility_after_reflection.y, visibility_after_reflection.z)) >= 0.1 &&
if (allow_reflect) {
// do reflect
direction = reflect_vector(direction, hit_facing);
pos = intersection_pos;
//max_factor -= smallest_factor;
x_pos = direction.x > 0.0;
x_null = (direction.x == 0.0);
y_pos = direction.y > 0.0;
y_null = (direction.y == 0.0);
z_pos = direction.z > 0.0;
z_null = (direction.z == 0.0);
} else {
break;
}
} }
} }
} }
} }
result.end_volume = volume_index;
result.end_factor = min(min(x_factor, y_factor), z_factor); result.end_factor = min(min(x_factor, y_factor), z_factor);
result.end_cycle = cycle; result.end_cycle = cycle;
// in case we have a transparent hit but no hit afterwards
if (!result.has_hit && result.has_transparent_hit) {
// did we stop because nothing could be seen through the object?
if (max(result.color_mul.x, max(result.color_mul.y, result.color_mul.z)) < 0.1) {
// if so count it as a hit
result.has_hit = true;
}
result.end_pos = end_pos_transparent;
result.end_color = end_color_transparent;
result.end_volume = end_volume_transparent;
result.end_facing = end_facing_transparent;
result.end_raster = end_raster_transparent;
result.color_mul = color_mul_transparent;
}
return result; return result;
} }
vec3 get_lighting_color(uint volume_start, vec3 starting_pos, vec4 orig_color_sample, vec3 normal) { vec3 get_lighting_color(uint volume_start, vec3 starting_pos, vec4 orig_color_sample, vec3 normal) {
uint max_light_num = scene_info.infos[0];
uint light_num = 0; uint light_num = 0;
// initialize color // initialize color
vec3 color_sum = vec3(0.0, 0.0, 0.0) + (orig_color_sample.xyz * 0.01); vec3 color_sum = vec3(0.0, 0.0, 0.0) + (orig_color_sample.xyz * 0.01);
uint max_iterations = max_light_num * scene_info.infos[1]; uint max_iterations = max_num_lights * max_iterations_per_light;
uint iteration = 0; uint iteration = 0;
while (iteration < max_iterations) { while (iteration < max_iterations) {
// setup light info // setup light info
@ -311,15 +387,14 @@ vec3 get_lighting_color(uint volume_start, vec3 starting_pos, vec4 orig_color_sa
vec3 light_direction = get_light_position(light_index) - starting_pos; vec3 light_direction = get_light_position(light_index) - starting_pos;
vec3 light_color = get_light_color(light_index); vec3 light_color = get_light_color(light_index);
Tracing result = trace_ray(volume_start, starting_pos, light_direction, 1.0, iteration, max_iterations); Tracing result = trace_ray(volume_start, starting_pos, light_direction, 1.0, iteration, max_iterations, false);
if (!result.has_hit) { // add result, if there is a hit the null vector will be added
// no hit, add light color result color_sum += float(!result.has_hit) * result.color_mul * max(dot(normal, normalize(light_direction)), 0.0) * (orig_color_sample.xyz * light_color) / (length(light_direction) * length(light_direction));
color_sum += result.color_mul * max(dot(normal, normalize(light_direction)), 0.0) * (orig_color_sample.xyz * light_color) / (length(light_direction) * length(light_direction));
}
iteration = result.end_cycle; iteration = result.end_cycle;
light_num += 1; light_num += 1;
if (light_num >= max_light_num) { if (light_num >= max_num_lights) {
break; break;
} }
} }
@ -327,42 +402,14 @@ vec3 get_lighting_color(uint volume_start, vec3 starting_pos, vec4 orig_color_sa
return color_sum; return color_sum;
} }
vec3 normal_for_facing(uint facing) {
if (facing == 0) {
return vec3(0.0, 0.0, -1.0);
}
if (facing == 1) {
return vec3(0.0, 0.0, 1.0);
}
if (facing == 2) {
return vec3(0.0, 1.0, 0.0);
}
if (facing == 3) {
return vec3(0.0, -1.0, 0.0);
}
if (facing == 4) {
return vec3(1.0, 0.0, 0.0);
}
if (facing == 5) {
return vec3(-1.0, 0.0, 0.0);
}
return vec3(0.0, 0.0, 0.0);
}
vec3 diffuse_tracing(uint volume_start, uvec2 raster_pos, vec3 pos, uint f) { vec3 diffuse_tracing(uint volume_start, uvec2 raster_pos, vec3 pos, uint f) {
uvec4 color_roughness = sample_color_from_scene_info(volume_start, raster_pos, f); uvec4 color_roughness = sample_color_from_scene_info(volume_start, raster_pos, f);
vec4 orig_color_sample = vec4(float(color_roughness.x) / 255.0, float(color_roughness.y) / 255.0, float(color_roughness.z) / 255.0, 1); vec4 orig_color_sample = vec4(float(color_roughness.x) / 255.0, float(color_roughness.y) / 255.0, float(color_roughness.z) / 255.0, 1);
vec3 normal = normal_for_facing(f); vec3 normal = normal_for_facing(f);
// diffuse raytracing using a quadratic raster of rays
int raster_half_steps = int(scene_info.infos[2]);
float raster_distance = uintBitsToFloat(scene_info.infos[3]);
int raster_points = (2 * raster_half_steps + 1) * (2 * raster_half_steps + 1);
vec3 color_sum = vec3(0.0, 0.0, 0.0); vec3 color_sum = vec3(0.0, 0.0, 0.0);
for (int u_offset = -raster_half_steps; u_offset <= raster_half_steps; u_offset++) { for (int u_offset = -half_diffuse_raster_steps; u_offset <= half_diffuse_raster_steps; u_offset++) {
for (int v_offset = -raster_half_steps; v_offset <= raster_half_steps; v_offset++) { for (int v_offset = -half_diffuse_raster_steps; v_offset <= half_diffuse_raster_steps; v_offset++) {
float x_offset = raster_distance * float(u_offset) * float(f == 0 || f == 1 || f == 4 || f == 5); float x_offset = raster_distance * float(u_offset) * float(f == 0 || f == 1 || f == 4 || f == 5);
float y_offset = raster_distance * float(u_offset) * float(f == 2 || f == 3); float y_offset = raster_distance * float(u_offset) * float(f == 2 || f == 3);
y_offset += raster_distance * float(v_offset) * float(f == 0 || f == 1); y_offset += raster_distance * float(v_offset) * float(f == 0 || f == 1);
@ -400,12 +447,12 @@ void main() {
vec3 color_sum; vec3 color_sum;
uint orig_neighbor = sample_neighbor_from_scene_info(fragVolumeStart, fragRasterPos, facing); uint orig_neighbor = sample_neighbor_from_scene_info(fragVolumeStart, fragRasterPos, facing);
float pos_infinity = uintBitsToFloat(0x7F800000);
if (orig_neighbor != 0) { if (orig_neighbor != 0) {
float pos_infinity = uintBitsToFloat(0x7F800000); Tracing t = trace_ray(fragVolumeStart, ubo.camera_pos, clamped_pos - ubo.camera_pos, pos_infinity, 0, max_iterations_per_light, false);
Tracing t = trace_ray(fragVolumeStart, ubo.camera_pos, clamped_pos - ubo.camera_pos, 100.0, 0, 20);
float opacity = float(color_roughness.w) / 255.0; float opacity = float(color_roughness.w) / 255.0;
if (t.has_hit) { if (t.has_hit) {
vec3 color_seen_through = diffuse_tracing(t.end_volume, t.end_raster, t.end_pos, t.end_facing) * orig_color_sample; vec3 color_seen_through = diffuse_tracing(t.end_volume, t.end_raster, t.end_pos, t.end_facing) * orig_color_sample * t.color_mul;
vec3 color_direct = diffuse_tracing(fragVolumeStart, fragRasterPos, clamped_pos, facing); vec3 color_direct = diffuse_tracing(fragVolumeStart, fragRasterPos, clamped_pos, facing);
color_sum = opacity * color_direct + (1.0 - opacity) * color_seen_through; color_sum = opacity * color_direct + (1.0 - opacity) * color_seen_through;
} }
@ -417,8 +464,15 @@ void main() {
} }
else { else {
color_sum = diffuse_tracing(fragVolumeStart, fragRasterPos, clamped_pos, facing); color_sum = diffuse_tracing(fragVolumeStart, fragRasterPos, clamped_pos, facing);
}
vec3 reflection_direction = reflect_vector(normalize(clamped_pos - ubo.camera_pos), facing);
Tracing reflection_tracing = trace_ray(fragVolumeStart, clamped_pos, reflection_direction, pos_infinity, 0, max_iterations_per_light, true);
float reflectivity = 1.0 - float(color_roughness.w) / 255.0;
if (reflection_tracing.has_hit || reflection_tracing.has_transparent_hit) {
vec3 color_from_reflection = diffuse_tracing(reflection_tracing.end_volume, reflection_tracing.end_raster, reflection_tracing.end_pos, reflection_tracing.end_facing) * orig_color_sample;
color_sum = color_sum * (1.0 - reflectivity) + color_from_reflection * reflectivity;
}
}
outColor = vec4(color_sum, 1.0); outColor = vec4(color_sum, 1.0);
} }

View file

@ -180,7 +180,7 @@ impl App {
data.use_geometry_shader = false; data.use_geometry_shader = false;
data.num_lights_per_volume = 2; data.num_lights_per_volume = 2;
data.max_iterations_per_light = 20; data.max_iterations_per_light = 20;
data.diffuse_raster_steps = 2; data.diffuse_raster_steps = 0;
data.diffuse_raster_size = 0.01; data.diffuse_raster_size = 0.01;
data.max_recursive_rays = 10; data.max_recursive_rays = 10;
data.diffuse_rays_per_hit = 1; data.diffuse_rays_per_hit = 1;

View file

@ -66,9 +66,12 @@ impl EmptyVolume {
let start_time = Instant::now(); let start_time = Instant::now();
// iterate over all block positions in the oct tree // iterate over all block positions in the oct tree
let mut check_its = 0; let mut check_its = 0;
for x_index in 0..tree.size { let mut x_index = 0;
for y_index in 0..tree.size { while x_index < tree.size {
for z_index in 0..tree.size { let mut y_index = 0;
while y_index < tree.size {
let mut z_index = 0;
while z_index < tree.size {
// check if there is a block at that position // check if there is a block at that position
let query_result = tree.test_element(x_index, y_index, z_index); let query_result = tree.test_element(x_index, y_index, z_index);
let mut transparent = false; let mut transparent = false;
@ -86,6 +89,7 @@ impl EmptyVolume {
for volume in &volumes { for volume in &volumes {
if volume.borrow().contains(&Vector3{x: x_index, y: y_index, z: z_index}) { if volume.borrow().contains(&Vector3{x: x_index, y: y_index, z: z_index}) {
contained = true; contained = true;
z_index = volume.borrow().size_z + volume.borrow().position.z;
break; break;
} }
} }
@ -479,9 +483,12 @@ impl EmptyVolume {
println!("new volume done"); println!("new volume done");
//push to the list //push to the list
volumes.push(reference); volumes.push(reference);
} }
z_index += 1
} }
y_index += 1;
} }
x_index += 1;
} }
println!("Did {} oct tree checks!", check_its); println!("Did {} oct tree checks!", check_its);
println!("add the neighbor linkage for all the volumes of the oct tree"); println!("add the neighbor linkage for all the volumes of the oct tree");

View file

@ -73,7 +73,7 @@ impl Scene {
color: vec3(shade, 1.0, shade), color: vec3(shade, 1.0, shade),
tex_coord: vec2(0.0, 0.0), tex_coord: vec2(0.0, 0.0),
transparent: false, transparent: false,
roughness: 128, roughness: 0,
}; };
oct_tree.set_cube(cube.clone()); oct_tree.set_cube(cube.clone());
@ -83,19 +83,19 @@ impl Scene {
let shade = (rng.gen_range(0..25) as f32) / 100.0; let shade = (rng.gen_range(0..25) as f32) / 100.0;
let cube = Cube { let cube = Cube {
pos: vec3(10.0, 10.0, 10.0), pos: vec3(10.0, 10.0, 10.0),
color: vec3(1.0, 0.0, 0.0), color: vec3(1.0, 1.0, 1.0),
tex_coord: vec2(0.0, 0.0), tex_coord: vec2(0.0, 0.0),
transparent: true, transparent: false,
roughness: 32, roughness: 0,
}; };
oct_tree.set_cube(cube.clone()); oct_tree.set_cube(cube.clone());
let cube = Cube { let cube = Cube {
pos: vec3(10.0, 10.0, 9.0), pos: vec3(10.0, 10.0, 9.0),
color: vec3(1.0, 0.0, 0.0), color: vec3(1.0, 1.0, 1.0),
tex_coord: vec2(0.0, 0.0), tex_coord: vec2(0.0, 0.0),
transparent: true, transparent: false,
roughness: 32, roughness: 0,
}; };
oct_tree.set_cube(cube.clone()); oct_tree.set_cube(cube.clone());