VoxelEngine2/shaders/rt_compute.comp
2025-04-11 11:35:57 +02:00

352 lines
No EOL
15 KiB
Text

#version 450
layout(binding = 0) uniform UniformBufferObject {
mat4 model;
mat4 geom_rot;
mat4 view;
mat4 proj;
vec3 camera_pos;
bool[16] use_geom_shader;
} ubo;
layout(binding = 3) readonly buffer SceneInfoBuffer {
uint compounds[];
};
layout(binding = 4) buffer SceneInfoBuffer2 {
uint volumes[];
};
layout(binding = 5) buffer SizedVertices {
float vertices[];
};
layout(binding = 6) buffer Indices {
uint indices[];
};
layout (local_size_x = 16, local_size_y = 1, local_size_z = 1) in;
uvec4 unpack_color(uint val) {
// left most 8 bits first
uint val1 = (val >> 24);
uint val2 = (val << 8) >> 24;
uint val3 = (val << 16) >> 24;
uint val4 = (val << 24) >> 24;
return uvec4(val4, val3, val2, val1);
}
void add_cube(uint cube_num, float scale, vec3 pos, vec3 color) {
// add node info for the cube
//vertice 0
vertices[(cube_num * 8 + 0) * 11 + 0] = pos.x - 0.5 * scale;
vertices[(cube_num * 8 + 0) * 11 + 1] = pos.y + 0.5 * scale;
vertices[(cube_num * 8 + 0) * 11 + 2] = pos.z + 0.5 * scale;
vertices[(cube_num * 8 + 0) * 11 + 3] = color.x;
vertices[(cube_num * 8 + 0) * 11 + 4] = color.y;
vertices[(cube_num * 8 + 0) * 11 + 5] = color.z;
//vertice 1
vertices[(cube_num * 8 + 1) * 11 + 0] = pos.x + 0.5 * scale;
vertices[(cube_num * 8 + 1) * 11 + 1] = pos.y + 0.5 * scale;
vertices[(cube_num * 8 + 1) * 11 + 2] = pos.z + 0.5 * scale;
vertices[(cube_num * 8 + 1) * 11 + 3] = color.x;
vertices[(cube_num * 8 + 1) * 11 + 4] = color.y;
vertices[(cube_num * 8 + 1) * 11 + 5] = color.z;
//vertice 2
vertices[(cube_num * 8 + 2) * 11 + 0] = pos.x - 0.5 * scale;
vertices[(cube_num * 8 + 2) * 11 + 1] = pos.y - 0.5 * scale;
vertices[(cube_num * 8 + 2) * 11 + 2] = pos.z + 0.5 * scale;
vertices[(cube_num * 8 + 2) * 11 + 3] = color.x;
vertices[(cube_num * 8 + 2) * 11 + 4] = color.y;
vertices[(cube_num * 8 + 2) * 11 + 5] = color.z;
//vertice 3
vertices[(cube_num * 8 + 3) * 11 + 0] = pos.x + 0.5 * scale;
vertices[(cube_num * 8 + 3) * 11 + 1] = pos.y - 0.5 * scale;
vertices[(cube_num * 8 + 3) * 11 + 2] = pos.z + 0.5 * scale;
vertices[(cube_num * 8 + 3) * 11 + 3] = color.x;
vertices[(cube_num * 8 + 3) * 11 + 4] = color.y;
vertices[(cube_num * 8 + 3) * 11 + 5] = color.z;
//vertice 4
vertices[(cube_num * 8 + 4) * 11 + 0] = pos.x - 0.5 * scale;
vertices[(cube_num * 8 + 4) * 11 + 1] = pos.y + 0.5 * scale;
vertices[(cube_num * 8 + 4) * 11 + 2] = pos.z - 0.5 * scale;
vertices[(cube_num * 8 + 4) * 11 + 3] = color.x;
vertices[(cube_num * 8 + 4) * 11 + 4] = color.y;
vertices[(cube_num * 8 + 4) * 11 + 5] = color.z;
//vertice 5
vertices[(cube_num * 8 + 5) * 11 + 0] = pos.x + 0.5 * scale;
vertices[(cube_num * 8 + 5) * 11 + 1] = pos.y + 0.5 * scale;
vertices[(cube_num * 8 + 5) * 11 + 2] = pos.z - 0.5 * scale;
vertices[(cube_num * 8 + 5) * 11 + 3] = color.x;
vertices[(cube_num * 8 + 5) * 11 + 4] = color.y;
vertices[(cube_num * 8 + 5) * 11 + 5] = color.z;
//vertice 6
vertices[(cube_num * 8 + 6) * 11 + 0] = pos.x - 0.5 * scale;
vertices[(cube_num * 8 + 6) * 11 + 1] = pos.y - 0.5 * scale;
vertices[(cube_num * 8 + 6) * 11 + 2] = pos.z - 0.5 * scale;
vertices[(cube_num * 8 + 6) * 11 + 3] = color.x;
vertices[(cube_num * 8 + 6) * 11 + 4] = color.y;
vertices[(cube_num * 8 + 6) * 11 + 5] = color.z;
//vertice 7
vertices[(cube_num * 8 + 7) * 11 + 0] = pos.x + 0.5 * scale;
vertices[(cube_num * 8 + 7) * 11 + 1] = pos.y - 0.5 * scale;
vertices[(cube_num * 8 + 7) * 11 + 2] = pos.z - 0.5 * scale;
vertices[(cube_num * 8 + 7) * 11 + 3] = color.x;
vertices[(cube_num * 8 + 7) * 11 + 4] = color.y;
vertices[(cube_num * 8 + 7) * 11 + 5] = color.z;
//add indices for the cube
//top
indices[cube_num * 36 + 0] = cube_num * 8 + 3;
indices[cube_num * 36 + 1] = cube_num * 8 + 0;
indices[cube_num * 36 + 2] = cube_num * 8 + 2;
indices[cube_num * 36 + 3] = cube_num * 8 + 3;
indices[cube_num * 36 + 4] = cube_num * 8 + 1;
indices[cube_num * 36 + 5] = cube_num * 8 + 0;
//bottom
indices[cube_num * 36 + 6] = cube_num * 8 + 6;
indices[cube_num * 36 + 7] = cube_num * 8 + 4;
indices[cube_num * 36 + 8] = cube_num * 8 + 7;
indices[cube_num * 36 + 9] = cube_num * 8 + 4;
indices[cube_num * 36 + 10] = cube_num * 8 + 5;
indices[cube_num * 36 + 11] = cube_num * 8 + 7;
//left
indices[cube_num * 36 + 12] = cube_num * 8 + 0;
indices[cube_num * 36 + 13] = cube_num * 8 + 4;
indices[cube_num * 36 + 14] = cube_num * 8 + 2;
indices[cube_num * 36 + 15] = cube_num * 8 + 6;
indices[cube_num * 36 + 16] = cube_num * 8 + 2;
indices[cube_num * 36 + 17] = cube_num * 8 + 4;
//right
indices[cube_num * 36 + 18] = cube_num * 8 + 1;
indices[cube_num * 36 + 19] = cube_num * 8 + 3;
indices[cube_num * 36 + 20] = cube_num * 8 + 5;
indices[cube_num * 36 + 21] = cube_num * 8 + 5;
indices[cube_num * 36 + 22] = cube_num * 8 + 3;
indices[cube_num * 36 + 23] = cube_num * 8 + 7;
//near
indices[cube_num * 36 + 24] = cube_num * 8 + 6;
indices[cube_num * 36 + 25] = cube_num * 8 + 3;
indices[cube_num * 36 + 26] = cube_num * 8 + 2;
indices[cube_num * 36 + 27] = cube_num * 8 + 3;
indices[cube_num * 36 + 28] = cube_num * 8 + 6;
indices[cube_num * 36 + 29] = cube_num * 8 + 7;
//far
indices[cube_num * 36 + 30] = cube_num * 8 + 0;
indices[cube_num * 36 + 31] = cube_num * 8 + 1;
indices[cube_num * 36 + 32] = cube_num * 8 + 4;
indices[cube_num * 36 + 33] = cube_num * 8 + 5;
indices[cube_num * 36 + 34] = cube_num * 8 + 4;
indices[cube_num * 36 + 35] = cube_num * 8 + 1;
}
void main() {
uint index = gl_GlobalInvocationID.x;
uint output_offset = 0;
uint compound_start = 0;
// iterate over the compounds and find the work index inside of it
while (index > compounds[compound_start] * compounds[compound_start]) {
output_offset += compounds[compound_start] * compounds[compound_start] * compounds[compound_start];
index -= compounds[compound_start] * compounds[compound_start];
compound_start = compounds[compound_start + 2];
}
// grid pos in the task
uint compound_grid_size = compounds[compound_start];
float compound_scale = uintBitsToFloat(compounds[compound_start + 1]);
vec3 mid_offset = vec3(compound_scale * 0.5, compound_scale * 0.5, compound_scale * 0.5);
uint y = index % compound_grid_size;
uint x = (index - y) / compound_grid_size;
vec3 compound_pos = vec3(uintBitsToFloat(compounds[compound_start + 5]), uintBitsToFloat(compounds[compound_start + 6]), uintBitsToFloat(compounds[compound_start + 7]));
// iterate upwards along the z axis
for (uint z=0; z < compound_grid_size; z++) {
// iterate over the included shapes
vec3 check_pos = compound_pos + vec3(float(x) * compound_scale, float(y) * compound_scale, float(z) * compound_scale) + mid_offset;
uvec4 color_roughness;
bool render = false;
vec3 color = vec3(0.0, 0.0, 1.0);
bool transparent = false;
//handle included shapes
for (uint o=0; o < compounds[compound_start + 3]; o++) {
uint component_index = compounds[compound_start + 9 + o];
uint component_type = compounds[component_index];
vec3 component_pos = vec3(uintBitsToFloat(compounds[component_index + 1]), uintBitsToFloat(compounds[component_index + 2]), uintBitsToFloat(compounds[component_index + 3]));
vec3 component_rot = vec3(uintBitsToFloat(compounds[component_index + 4]), uintBitsToFloat(compounds[component_index + 5]), uintBitsToFloat(compounds[component_index + 6]));
mat3 component_rot_mat = mat3(
vec3(1.0, 0.0, 0.0),
vec3(0.0, cos(component_rot.x), sin(component_rot.x)),
vec3(0.0, -sin(component_rot.x), cos(component_rot.x))
) * mat3(
vec3(cos(component_rot.y), 0.0, sin(component_rot.y)),
vec3(0.0, 1.0, 0.0),
vec3(-sin(component_rot.y), 0.0, cos(component_rot.y))
) * mat3(
vec3(cos(component_rot.z), sin(component_rot.z), 0.0),
vec3(-sin(component_rot.z), cos(component_rot.y), 0.0),
vec3(0.0, 0.0, 1.0)
);
uvec4 component_color = unpack_color(compounds[component_index + 7]);
uint transparent = compounds[component_index + 8];
if (component_type == 0) {
// handle sphere
float radius = uintBitsToFloat(compounds[component_index + 9]);
render = length(component_pos - check_pos) <= radius;
if (render) {
color = vec3(float(component_color.x) / 255.0, float(component_color.y) / 255.0, float(component_color.z) / 255.0);
break;
}
continue;
}
if (component_type == 1) {
// handle cone
float radius1 = uintBitsToFloat(compounds[component_index + 9]);
float radius2 = uintBitsToFloat(compounds[component_index + 10]);
vec3 direction = component_rot_mat * vec3(uintBitsToFloat(compounds[component_index + 11]), uintBitsToFloat(compounds[component_index + 12]), uintBitsToFloat(compounds[component_index + 13]));
vec3 diff = check_pos - component_pos;
float factor = dot(direction, diff) / dot(direction, direction);
vec3 n = diff - factor * direction;
float radius = radius1 * (1.0 - factor) + radius2 * factor;
render = length(n) <= radius && 0 <= factor && factor <= 1.0;
if (render) {
color = vec3(float(component_color.x) / 255.0, float(component_color.y) / 255.0, float(component_color.z) / 255.0);
break;
}
continue;
}
if (component_type == 2) {
// handle cone
vec3 size = vec3(uintBitsToFloat(compounds[component_index + 9]), uintBitsToFloat(compounds[component_index + 10]), uintBitsToFloat(compounds[component_index + 11]));
vec3 direction1 = component_rot_mat * vec3(size.x, 0.0, 0.0) / 2.0;
vec3 direction2 = component_rot_mat * vec3(0.0, size.y, 0.0) / 2.0;
vec3 direction3 = component_rot_mat * vec3(0.0, 0.0, size.z) / 2.0;
vec3 diff = check_pos - component_pos;
float factor1 = dot(direction1, diff) / dot(direction1, direction1);
float factor2 = dot(direction2, diff) / dot(direction2, direction2);
float factor3 = dot(direction3, diff) / dot(direction3, direction3);
render = (-1.0 <= factor1 && factor1 <= 1.0) && (-1.0 <= factor2 && factor2 <= 1.0) && (-1.0 <= factor3 && factor3 <= 1.0);
if (render) {
color = vec3(float(component_color.x) / 255.0, float(component_color.y) / 255.0, float(component_color.z) / 255.0);
break;
}
continue;
}
}
//handle excluded shapes
for (uint o=0; o < compounds[compound_start + 4]; o++) {
uint component_index = compounds[compound_start + 9 + compounds[compound_start + 3] + o];
uint component_type = compounds[component_index];
vec3 component_pos = vec3(uintBitsToFloat(compounds[component_index + 1]), uintBitsToFloat(compounds[component_index + 2]), uintBitsToFloat(compounds[component_index + 3]));
vec3 component_rot = vec3(uintBitsToFloat(compounds[component_index + 4]), uintBitsToFloat(compounds[component_index + 5]), uintBitsToFloat(compounds[component_index + 6]));
mat3 component_rot_mat = mat3(
vec3(1.0, 0.0, 0.0),
vec3(0.0, cos(component_rot.x), sin(component_rot.x)),
vec3(0.0, -sin(component_rot.x), cos(component_rot.x))
) * mat3(
vec3(cos(component_rot.y), 0.0, sin(component_rot.y)),
vec3(0.0, 1.0, 0.0),
vec3(-sin(component_rot.y), 0.0, cos(component_rot.y))
) * mat3(
vec3(cos(component_rot.z), sin(component_rot.z), 0.0),
vec3(-sin(component_rot.z), cos(component_rot.y), 0.0),
vec3(0.0, 0.0, 1.0)
);
uvec4 color = unpack_color(compounds[component_index + 7]);
uint transparent = compounds[component_index + 8];
if (component_type == 0) {
// handle sphere
float radius = uintBitsToFloat(compounds[component_index + 9]);
render = render && !(length(component_pos - check_pos) <= radius);
if (!render) {
break;
}
continue;
}
if (component_type == 1) {
// handle cone
float radius1 = uintBitsToFloat(compounds[component_index + 9]);
float radius2 = uintBitsToFloat(compounds[component_index + 10]);
vec3 direction = component_rot_mat * vec3(uintBitsToFloat(compounds[component_index + 11]), uintBitsToFloat(compounds[component_index + 12]), uintBitsToFloat(compounds[component_index + 13]));
vec3 diff = check_pos - component_pos;
float factor = dot(direction, diff) / dot(direction, direction);
vec3 n = diff - factor * direction;
float radius = radius1 * (1.0 - factor) + radius2 * factor;
render = render && !(length(n) <= radius && 0 <= factor && factor <= 1.0);
if (!render) {
break;
}
continue;
}
if (component_type == 2) {
// handle cone
vec3 size = vec3(uintBitsToFloat(compounds[component_index + 9]), uintBitsToFloat(compounds[component_index + 10]), uintBitsToFloat(compounds[component_index + 11]));
vec3 direction1 = component_rot_mat * vec3(size.x, 0.0, 0.0) / 2.0;
vec3 direction2 = component_rot_mat * vec3(0.0, size.y, 0.0) / 2.0;
vec3 direction3 = component_rot_mat * vec3(0.0, 0.0, size.z) / 2.0;
vec3 diff = check_pos - component_pos;
float factor1 = dot(direction1, diff) / dot(direction1, direction1);
float factor2 = dot(direction2, diff) / dot(direction2, direction2);
float factor3 = dot(direction3, diff) / dot(direction3, direction3);
render = render && !((-1.0 <= factor1 && factor1 <= 1.0) && (-1.0 <= factor2 && factor2 <= 1.0) && (-1.0 <= factor3 && factor3 <= 1.0));
if (!render) {
break;
}
continue;
}
}
if (render) {
add_cube(output_offset + index * compound_grid_size + z, compound_scale, check_pos, color);
}
}
//volumes[index] = compounds[index];
}